Skip to main content
Log in

Quantum coherence versus non-classical correlations in XXZ spin-chain under Dzyaloshinsky–Moriya (DM) and KSEA interactions

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We address the dynamics of quantum coherence and non-classical correlations in a two-qubit one-dimensional XXZ Heisenberg spin-\(\frac{1}{2}\) chain when exposed to a homogeneous magnetic field and characterized by the combined effects of temperature, Dzyaloshinsky–Moriya (DM), Kaplan–Shekhtman–Entin–Wohlman–Aharony (KSEA) interactions. Using local quantum uncertainty, we estimate quantum correlations in the considered thermal state, whereas quantum coherence is measured using \(\ell _1\) norm of coherence and relative entropy of coherence. We show that the qualitative as well as the quantitative features of the quantum correlations and coherence depend largely upon the parameters of the two-qubit spin-chain and magnetic field. Quantum correlations and coherence in spin chains have distinct natures and behave differently, which we find intriguing. The \(\ell _1\) norm of coherence was shown to be more dependable than the relative entropy of coherence for quantifying coherence. The dynamical behavior of quantum correlations and coherence has been proven to be largely non-oscillatory. We further show that depending on the temperature, DM, and KSEA interaction strengths, not only can the coherence and non-classical correlations be preserved, but that the initial mixed states can be readily transformed into maximally correlated and coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  3. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.K. Ekert, Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Keet, B. Fortescue, D. Markham, B.C. Sanders, Quantum secret sharing with qdit graph states. Phys. Rev. A 82(6), 062315 (2010)

    Article  ADS  Google Scholar 

  6. M. Mansour, Z. Dahbi, Quantum secret sharing protocol using maximally entangled multi-qudit states. Int. J. Theor. Phys. 59, 3876–3887 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.R.R. Carvalho, F. Mintert, A. Buchleitner, Decoherence and Multipartite Entanglement. Phys. Rev. Lett. 93(23), 230501 (2004)

    Article  ADS  Google Scholar 

  8. F. Mintert, M. Kuś, A. Buchleitner, Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92(16), 167902 (2004)

    Article  ADS  Google Scholar 

  9. P.J. Love, A.M. Van Den Brink, A.Y. Smirnov, M.H.S. Amin, M. Grajcar, E. Il’ichev, A. Izmalkov, A.M. Zagoskin, A characterization of global entanglement. Quantum Inf. Process. 6, 187–195 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D.A. Meyer, N.R. Wallach, Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273–4278 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. G.K. Brennen, An observable measure of entanglement for pure states of multi-qubit systems. Quantum. Inf. Comput. 3(6), 619–626 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Q.-Q. Guo, X.-Y. Chen, Y.-Y. Wang, Measures of genuine multipartite entanglement for graph states. Chin. Phys. B 23(5), 050309 (2014)

    Article  ADS  Google Scholar 

  13. A.J. Scott, Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69(5), 052330 (2004)

    Article  ADS  Google Scholar 

  14. M. Mansour, Z. Dahbi, M. Essakhi, A. Salah, Quantum correlations through spin coherent states. Int. J. Theor. Phys. 60, 2156–2174 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Coffman, J. Oydip Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  16. M. Mansour, Y. Oulouda, A. Sbiri, M. El Falaki, Decay of negativity of randomized multiqubit mixed states. Laser Phys. 31(3), 035201 (2021)

    Article  ADS  Google Scholar 

  17. M. Mansour, M. Daoud, Z. Dahbi, Randomized entangled mixed states from phase states. Int. J. Theor. Phys. 59, 895–907 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Mansour, M. Daoud, Entangled thermal mixed states for multi-qubit systems. Mod. Phys. Lett. B 33(22), 1950254 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Horodecki, J. Oppenheim, (Quantumness in the context of) resource theories. Int. J. Mod. Phys. B 27, 1345019 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Streltsov, Quantum Correlations Beyond Entanglement (Springer, Cham, 2015), pp.17–22

    MATH  Google Scholar 

  21. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  22. L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. B. Dakić, V. Vedral, Brukner, Necessary and sufficient condition for nonzero quantum discord. Rev. Lett. 105(19), 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  24. D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110(24), 240402 (2013)

    Article  ADS  Google Scholar 

  25. M. Essakhi, Y. Khedif, M. Mansour et al., Non-classical correlations in multipartite generalized coherent states. Braz. J. Phys. 52, 124 (2022). https://doi.org/10.1007/s13538-022-01119-2

    Article  ADS  Google Scholar 

  26. A. Sbiri, M. Mansour, Y. Oulouda, Local quantum uncertainty vs negativity through Gisin states. Int. J. Quantum Inf. 19(05), 2150023 (2021)

    Article  MATH  Google Scholar 

  27. A. Sbiri, M. Oumennana, M. Mansour, Thermal quantum correlations in a two-qubit Heisenberg model under Calogero-Moser and Dzyaloshinsky-Moriya interactions. Mod. Phys. Lett. B 36, 2150618 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Elghaayda, Z. Dahbi, M. Mansour, Local quantum uncertainty and local quantum Fisher information in two-coupled double quantum dots. Opt. Quant. Electron. 54, 419 (2022)

    Article  Google Scholar 

  29. W.K. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. X. Yuan, G. Bai, T. Peng, X. Ma, Quantum uncertainty relation using coherence. Phys. Rev. A 96, 032313 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. M.L. Hu, Y.Y. Gao, H. Fan, Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A 101, 032305 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. M.L. Hu, S.Q. Shen, H. Fan, Maximum coherence in the optimal basis. Phys. Rev. A 96, 052309 (2017)

    Article  ADS  Google Scholar 

  34. M.L. Hu, X. Hu, J. Wang, Y. Peng, Y.R. Zhang, H. Fan, Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  35. R. Vazquez, S. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, M.S. Hybertsen, Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663 (2012)

    Article  ADS  Google Scholar 

  36. O. Karlstrom, H. Linke, G. Karlstrom, A. Wacker, Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)

    Article  ADS  Google Scholar 

  37. V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  38. V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  39. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  40. D. Girolami, Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  41. J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 16040 (2014)

    Google Scholar 

  42. G. Rigolin, Thermal entanglement in the two-qubit Heisenberg XYZ model. Int. J. Quant. Inf. 14, 393 (2004)

    Article  MATH  Google Scholar 

  43. M. Asoudeh, V. Karimipour, Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71(2), 022308 (2005)

    Article  ADS  Google Scholar 

  44. D. Park, Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii-Moriya interactions. Quantum Inf. Process. 18, 172 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Qin, Y.-B. Li, F.-P. Wu, Relations between quantum correlations, purity and teleportation fidelity for the two-qubit Heisenberg XYZ system. Quantum Inf. Process. 13(7), 1573 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. I. Dzyaloshinsky, A thermodynamic theory of “weak’’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  47. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. Lett. 120, 91–98 (1960)

    ADS  Google Scholar 

  48. D.-C. Li, Z.-L. Cao, Entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii-Moriya interaction and inhomogeneous magnetic field. Eur. Phys. J. D 50, 207–214 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. J.-J. Chen, J. Cui, Y.-R. Zhang, H. Fan, Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016)

    Article  ADS  Google Scholar 

  50. G. Karpat, B. Çakmak, F.F. Fanchini, Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  51. Q. Chen, G.-Q. Zhang, J.-Q. Cheng, J.B. Xu, Topological quantum phase transitions in the 2-D Kitaev honeycomb model. Quantum Inf. Proc. 18, 8 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. T.-C. Yi, W.-L. You, N. Wu, A.M. Oleś, Criticality and factorization in the Heisenberg chain with Dzyaloshinskii-Moriya interaction. Phys. Rev. B 100, 024423 (2019)

    Article  ADS  Google Scholar 

  53. P. Thakur, P. Durganandini, Factorization, coherence, and asymmetry in the Heisenberg spin-1 2 XXZ chain with Dzyaloshinskii-Moriya interaction in transverse magnetic field. Phys. Rev. B 102, 064409 (2020)

    Article  ADS  Google Scholar 

  54. T.A. Kaplan, Single-band Hubbard model with spin-orbit coupling. Z. Phys. B Condens. Matter 49, 313 (1983)

    Article  ADS  Google Scholar 

  55. L. Shektman, O. Entin-Wohlman, A. Aharony, Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69, 836 (1992)

    Article  ADS  Google Scholar 

  56. L. Shektman, A. Aharony, O. Entin-Wohlman, Bond-dependent symmetric and antisymmetric superexchange interactions in La 2 CuO 4. Phys. Rev. B 47, 174 (1993)

    Article  ADS  Google Scholar 

  57. A. Zheludev, S. Maslov, I. Tsukada, I. Zaliznyak, L.P. Regnault, T. Masuda, K. Uchinokura, R. Erwin, G. Shirane, Experimental evidence for Shekhtman-Entin-Wohlman-Aharony interactions in Ba2CuGe2 O7. Phys. Rev. Lett. 81, 5410 (1998)

    Article  ADS  Google Scholar 

  58. T. Yildirim, A.B. Harris, A. Aharony, O. Entin-Wohlman, Anisotropic spin Hamiltonians due to spin-orbit and Coulomb exchange interactions. Phys. Rev. B 52, 10239 (1995)

    Article  ADS  Google Scholar 

  59. M.A. Yurischev, On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions. Quantum Inf. Process. 19, 336 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  60. Y. Khedif, S. Haddadi, M.R. Pourkarimi, M. Daoud, Thermal correlations and entropic uncertainty in a two-spin system under DM and KSEA interactions. Mod. Phys. Lett. A 29, 2150209 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  61. G. Karpat, B. Çakmak, F.F. Fanchini, Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90(10), 104431 (2014)

    Article  ADS  Google Scholar 

  62. Jin-Liang. Guo, Jin-Long. Wei, Wan Qin, Mu. Qing-Xia, Examining quantum correlations in the XY spin chain by local quantum uncertainty. Quantum Inf. Process. 14, 1429–1442 (2015)

    Article  ADS  MATH  Google Scholar 

  63. E.P. Wigner, M.M. Yanase, Information contents of distributions. Proc. Nat. Acad. Sci. USA 49, 910–918 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. S. Luo, Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91(18), 180403 (2003)

    Article  ADS  Google Scholar 

  65. A.B.A. Mohamed, A.U. Rahman, H. Eleuch, Temporal quantum memory and non-locality of two trapped ions under the effect of the intrinsic decoherence: entropic uncertainty, trace norm nonlocality and entanglement. Symmetry 14(4), 648 (2022)

    Article  Google Scholar 

  66. A.U. Rahman, S. Haddadi, M.R. Pourkarimi, M. Ghominejad, Fidelity of quantum states in a correlated dephasing channel. Laser Phys. Lett. 19(3), 035204 (2022)

    Article  ADS  Google Scholar 

  67. A.U. Rahman, M. Noman, M. Javed, M.X. Luo, A. Ullah, Quantum correlations of tripartite entangled states under Gaussian noise. Quantum Inf. Process. 20(9), 1–20 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  68. T.K. Lionel, T. Martin, F.G. Collince, L.C. Fai, Effects of static noise on the dynamics of quantum correlations for a system of three qubits. Int. J. Mod. Phys. B 31(8), 1750046 (2017)

    Article  ADS  MATH  Google Scholar 

  69. A. Mohamed, H. Eleuch, C.H. Ooi, Non-locality correlation in two driven qubits inside an open coherent cavity: Trace norm distance and maximum bell function. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  70. A.B.A. Mohamed, Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D 71(10), 1–8 (2017)

    Article  Google Scholar 

  71. M. Hashem, A.B.A. Mohamed, S. Haddadi, Y. Khedif, M.R. Pourkarimi, M. Daoud, Bell nonlocality, entanglement, and entropic uncertainty in a Heisenberg model under intrinsic decoherence: DM and KSEA interplay effects. Appl. Phys. B 128(4), 1–10 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Mansour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oumennana, M., Rahman, A.U. & Mansour, M. Quantum coherence versus non-classical correlations in XXZ spin-chain under Dzyaloshinsky–Moriya (DM) and KSEA interactions. Appl. Phys. B 128, 162 (2022). https://doi.org/10.1007/s00340-022-07881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07881-0

Navigation