Skip to main content
Log in

The role of wetting layer and QD-layers on the performance of 1.3 µm QD-VCSEL

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the effect of the thickness of the wetting layer (WL) and the number of quantum dots (QDs) on the performance of 1.3 µm QD vertical-cavity surface-emitting lasers (QD-VCSELs) using self-consistent model based on rate equations and thermal conduction equations. QD-VCSELs' output power and modulation bandwidth rolled-over due to self-heating. Results demonstrate that at the same bias current, the maximum achievable 3-dB modulation bandwidth and output power are not achieved, and the point of maximum 3-dB modulation bandwidth occurred at lower currents. In addition, the larger wetting layer thickness and the greater number of QD layers modify the self-heating and enhance the efficiency and output characteristics of the laser where the rolled-over of the laser happens at higher bias currents. Furthermore, since wetting-layer thickness and the number of QD layers increase, the self-heating phenomenon is modified and the efficiency and output characteristics of the QD-VCSELs are improved by the output power rollover at higher bias currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. C. Tong, X. Dawei, S.F. Yoon, Y. Ding, W.J. Fan, Temperature characteristics of 1.3-µm p-doped InAs–GaAs quantum-dot vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 15(3), 743–748 (2009)

    Article  ADS  Google Scholar 

  2. C.W. Wilmsen, H. Temkin, L.A. Coldren, Vertical-cavity surface-emitting lasers: design, fabrication, characterization, and applications, vol. 24 (Cambridge University Press, 2001)

    Google Scholar 

  3. K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, H. Ishikawa, 1.3-µm CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots. IEEE J. Quantum Electron. 36(4), 472–478 (2000)

    Article  ADS  Google Scholar 

  4. R.P. Sarzala, Modeling of the threshold operation of 1.3-µm GaAs-based oxide-confined (InGa) As-GaAs quantum-dot vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 40(6), 629–639 (2004)

    Article  ADS  Google Scholar 

  5. N. Ledentsov, Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts. IEEE J. Sel. Top. Quantum Electron. 8(5), 1015–1024 (2002)

    Article  ADS  Google Scholar 

  6. Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40(11), 939–941 (1982)

    Article  ADS  Google Scholar 

  7. M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 22(9), 1915–1921 (1986)

    Article  ADS  Google Scholar 

  8. H. Sakaki, Quantum wire superlattices and coupled quantum box arrays: A novel method to suppress optical phonon scattering in semiconductors. Jpn. J. Appl. Phys. 28(2A), L314 (1989)

    Article  ADS  Google Scholar 

  9. K.J. Vahala, Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain. IEEE J. Quantum Electron. 24(3), 523–530 (1988)

    Article  ADS  Google Scholar 

  10. Y.H. Chang, P.C. Peng, W.K. Tsai, G. Lin, R.S. Hsiao, H.P. Yang, H.C. Yu, K.F. Lin, J.Y. Chi, S.C. Wang, H.C. Kuo, Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB. IEEE Photon. Technol. Lett. 18(7), 847–849 (2006)

    Article  ADS  Google Scholar 

  11. N.N. Ledentsov, F. Hopfer, D. Bimberg, High-speed quantum-dot vertical-cavity surface-emitting lasers. Proc. IEEE 95(9), 1741–1756 (2007)

    Article  Google Scholar 

  12. J. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A. Zhukov, A. Kovsh, M.V. Maximov, B.V. Volovik, Zh.I. Alferov, D. Bimberg, Inas-ingaas quantum dot vcsels on gaas substrates emitting at 1.3-µm. Electron. Lett. 36(16), 1384–1385 (2000)

    Article  ADS  Google Scholar 

  13. H.-C. Yu, J.S. Wang, Y. Su, S.J. Chang, F.I. Lai, Y.H. Chang, H.C. Kuo, C.P. Sung, H.D. Yang, K.F. Lin, J.M. Wang, J. Chi, R. Hsiao, S. Mikhrin, 1.3-μm InAs-InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE. IEEE Photon. Technol. Lett. 18(2), 418–420 (2006)

    Article  ADS  Google Scholar 

  14. D. Boiko, G. Guerrero, E. Kapon, Thermoelectrical model for vertical cavity surface emitting lasers and arrays. J. Appl. Phys. 100(10), 103102 (2006)

    Article  ADS  Google Scholar 

  15. D. Xu, S.F. Yoon, C. Tong, Self-consistent analysis of carrier confinement and output power in 1.3-µm InAs–GaAs quantum-dot VCSELs. IEEE J. Quantum Electron. 44(9), 879–885 (2008)

    Article  ADS  Google Scholar 

  16. Y. Liu, W.C. Ng, K.D. Choquette, K. Hess, Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 41(1), 15–25 (2005)

    Article  ADS  Google Scholar 

  17. T. Wipiejewski, H.D. Wolf, L. Korte, W. Huber, G. Kristen, C. Hoyler, H. Hedrich, O. Kleinbub, M. Popp, J. Kaindl, and A. Rieger, Performance and Reliability of Oxide Confined VCSELs. in 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No. 99CH36299). 1999. IEEE.

  18. D.W. Xu, C.Z. Tong, S.F. Yoon, L.J. Zhao, Y. Ding, W.J. Fan, Self-heating effect in 1.3-μm p-doped InAs/GaAs quantum dot vertical cavity surface emitting lasers. J. Appl. Phys. 107(6), 063107 (2010)

    Article  ADS  Google Scholar 

  19. S. Alaei, M. Seifouri, S. Olyaee, and G. Babaabbasi, Effect of the Number of Quantum-Dot Layers on the Performance of the 1.3 μm InAs/GaAs VCSELs. in 2021 29th Iranian Conference on Electrical Engineering (ICEE). 2021. IEEE.

  20. D.W. Xu, S.F. Yoon, Y. Ding, C.Z. Tong, W.J. Fan, L.J. Zhao, 13-µm in (Ga) as quantum-dot VCSELs fabricated by dielectric-free approach with surface-relief process. IEEE Photon. Technol. Lett. 23(2), 91–93 (2010)

    Article  ADS  Google Scholar 

  21. C.Z. Tong, S.F. Yoon, C.Y. Ngo, C.Y. Liu, W.K. Loke, Rate equations for 13-μm dots-under-a-well and dots-in-a-well self-assembled InAs–GaAs quantum-dot lasers. IEEE J. Quantum Electron. 42(11), 1175–1183 (2006)

    Article  ADS  Google Scholar 

  22. D. Deppe, D. Huffaker, Quantum dimensionality, entropy, and the modulation response of quantum dot lasers. Appl. Phys. Lett. 77(21), 3325–3327 (2000)

    Article  ADS  Google Scholar 

  23. D.R. Matthews, H.D. Summers, P.M. Smowton, M. Hopkinson, Experimental investigation of the effect of wetting-layer states on the gain–current characteristic of quantum-dot lasers. Appl. Phys. Lett. 81(26), 4904–4906 (2002)

    Article  ADS  Google Scholar 

  24. S. Sanguinetti, M. Henini, M.G. Alessi, M. Capizzi, P. Frigeri, S. Franchi, Carrier thermal escape and retrapping in self-assembled quantum dots. Phys. Rev. B 60(11), 8276 (1999)

    Article  ADS  Google Scholar 

  25. L. Wang, V. Křápek, F. Ding, F. Horton, A. Schliwa, D. Bimberg, A. Rastelli, O.G. Schmidt, Self-assembled quantum dots with tunable thickness of the wetting layer: role of vertical confinement on interlevel spacing. Phys. Rev. B 80(8), 085309 (2009)

    Article  ADS  Google Scholar 

  26. D.-S. Han, L.V. Asryan, Effect of the wetting layer on the output power of a double tunneling-injection quantum-dot laser. J. Lightwave Technol. 27(24), 5775–5782 (2009)

    Article  ADS  Google Scholar 

  27. J.S. Kim, I.-H. Bae, Optical properties of wetting layer in InAs quantum dots at dierent growth temperatures. J. Korean Phys. Soc. 42, S483–S486 (2003)

    Google Scholar 

  28. R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, D.J.H. Cockayne, Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 69(13), 1888–1890 (1996)

    Article  ADS  Google Scholar 

  29. K. Nishi, R. Mirin, D. Leonard, G. Medeiros-Ribeiro, P.M. Petroff, A.C. Gossard, Structural and optical characterization of InAs/InGaAs self-assembled quantum dots grown on (311) B GaAs. J. Appl. Phys. 80(6), 3466–3470 (1996)

    Article  ADS  Google Scholar 

  30. A. Patanè, A. Polimeni, P.C. Main, M. Henini, L. Eaves, High-temperature light emission from InAs quantum dots. Appl. Phys. Lett. 75(6), 814–816 (1999)

    Article  ADS  Google Scholar 

  31. R. Kumar, Y. Maidaniuk, S.K. Saha, Y.L. Mazur, G.J. Salamo, Evolution of InAs quantum dots and wetting layer on GaAs (001): Peculiar photoluminescence near onset of quantum dot formation. J. Appl. Phys. 127(6), 065306 (2020)

    Article  ADS  Google Scholar 

  32. S. Lee, O.L. Lazarenkova, P. von Allmen, F. Oyafuso, G. Klimeck, Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots. Phys. Rev. B 70(12), 125307 (2004)

    Article  ADS  Google Scholar 

  33. M. Shahzadeh, M. Sabaeian, The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots. AIP Adv. 4(6), 067113 (2014)

    Article  ADS  Google Scholar 

  34. A. Baskaran, P. Smereka, Mechanisms of stranski-krastanov growth. J. Appl. Phys. 111(4), 044321 (2012)

    Article  ADS  Google Scholar 

  35. H. Zhang, Y. Chen, G. Zhou, C. Tang, Z. Wang, Wetting layer evolution and its temperature dependence during self-assembly of InAs/GaAs quantum dots. Nanoscale Res. Lett. 7(1), 1–6 (2012)

    Article  ADS  Google Scholar 

  36. K. Kash, A. Scherer, J.M. Worlock, H.G. Craighead, M.C. Tamargo, Optical spectroscopy of ultrasmall structures etched from quantum wells. Appl. Phys. Lett. 49(16), 1043–1045 (1986)

    Article  ADS  Google Scholar 

  37. V. Shchukin, N.N. Ledentsov, D. Bimberg, Epitaxy of nanostructures (Springer Science & Business Media, 2004)

    Book  Google Scholar 

  38. X. Han, J. Li, J. Wu, G. Cong, X. Liu, Q. Zhu, Z. Wang, Intersubband optical absorption in quantum dots-in-a-well heterostructures. J Appl. Phys. 98(5), 053703 (2005)

    Article  ADS  Google Scholar 

  39. N. Tansu, L.J. Mawst, Current injection efficiency of InGaAsN quantum-well lasers. J Appl. Phys. 97(5), 054502 (2005)

    Article  ADS  Google Scholar 

  40. H. Abbaspour, V. Ahmadi, M.H. Yavari, Analysis of QD VCSEL dynamic characteristics considering homogeneous and inhomogeneous broadening. IEEE J. Sel. Top. Quantum Electron. 17(5), 1327–1333 (2011)

    Article  ADS  Google Scholar 

  41. Q. Cao, S.F. Yoon, C.Z. Tong, C.Y. Ngo, C.Y. Liu, R. Wang, H.X. Zhao, Two-state competition in 1.3 μ m multilayer InAs/InGaAs quantum dot lasers. Appl. Phys. Lett. 95(19), 191101 (2009)

    Article  ADS  Google Scholar 

  42. A.V. Uskov, F. Adler, H. Schweizer, M.H. Pilkuhn, Auger carrier relaxation in self-assembled quantum dots by collisions with two-dimensional carriers. J. Appl. Phys. 81(12), 7895–7899 (1997)

    Article  ADS  Google Scholar 

  43. A. Steinhoff, H. Kurtze, P. Gartner, M. Florian, D. Reuter, A.D. Wieck, M. Bayer, F. Jahnke, Combined influence of Coulomb interaction and polarons on the carrier dynamics in InGaAs quantum dots. Phys. Rev. B 88(20), 205309 (2013)

    Article  ADS  Google Scholar 

  44. R. Lang, Problems in recent analysis of injected carrier dynamics in semiconductor quantum dots. Appl. Phys. Lett. 79(24), 3912–3913 (2001)

    Article  ADS  Google Scholar 

  45. E. Xing, C. Tong, J. Rong, S. Shu, H. Wu, L. Wang, S. Tian, L. Wang, Modulation of carrier dynamics and threshold characteristics in 1.3-μm quantum dot photonic crystal nanocavity lasers. Opt. Laser Technol. 82, 10–16 (2016)

    Article  ADS  Google Scholar 

  46. R. Bose, J.S. Pelc, S. Vo, C.M. Santori, R.G. Beausoleil, Carrier dynamics in GaAs photonic crystal cavities near the material band edge. Opt. Express 23(10), 12732–12739 (2015)

    Article  ADS  Google Scholar 

  47. Y. Nakata, Y. Sugiyama, M. Sugawara, Semiconductors and semimetals (Academic, New York, 1999)

    Google Scholar 

  48. A.F.J. Levi, Applied quantum mechanics (Cambridge University Press, 2006)

    Book  MATH  Google Scholar 

  49. T. Kobayashi, Y. Furukawa, Temperature distributions in the GaAs-AlGaAs double-heterostructure laser below and above the threshold current. Jpn. J. Appl. Phys. 14(12), 1981 (1975)

    Article  ADS  Google Scholar 

  50. W. Nakwaski, M. Osinski, Thermal properties of etched-well surface-emitting semiconductor lasers. IEEE J. Quantum Electron. 27(6), 1391–1401 (1991)

    Article  ADS  Google Scholar 

  51. H. Zhang, G. Mrozynski, A. Wallrabenstein, J. Schrage, E. Griese, Self-consistent model and numerical analysis of VCSEL’s laser diodes. Int. J. Infrared Millimeter Waves 24(3), 377–389 (2003)

    Article  Google Scholar 

  52. Y.-G. Zhao, J. McInerney, Transient temperature response of vertical-cavity surface-emitting semiconductor lasers. IEEE J. Quantum Electron. 31(9), 1668–1673 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab), Shahid Rajaee University.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

The authors declared that the manuscript ethics is approved as per the journal.

Consent to participate

Yes.

Consent for publication

The authors gave consent for publication as per the journal standard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: rate equations

Appendix A: rate equations

Here, the rate equations for the 1.3 µm QD-VCSELs are listed [15, 21]. The parameters of the rate equations are demonstrated in Table 1.

$$\frac{{{\text{d}}N_{B} }}{{{\text{d}}t}} = \frac{J}{qb} + \frac{1}{{t_{ewb} }}\frac{{g_{w} f_{w} }}{\frac{b}{n}}\left( {1 - f_{B} } \right) - \left( {\frac{1}{{t_{bw} }} + \frac{1}{{t_{rB} }}} \right)N_{B}$$
(A1)
$$\frac{{{\text{d}}f_{w} }}{{{\text{d}}t}} = \frac{{\left( {1 - f_{w} } \right)}}{{g_{w} }}\frac{{N_{B} b/n}}{{t_{bw} }} - \frac{{f_{w} }}{{t_{ebw} }} + \mathop \sum \limits_{i = 0}^{n2} \left[ {\frac{{2P_{i} \rho }}{{g_{w} }}Es_{iw} f_{i} \left( {1 - f_{w} } \right) - R_{wi} f_{w} \left( {1 - f_{i} } \right)} \right] - \frac{{f_{w} }}{{t_{rw} }}$$
(A2)
$$\frac{{{\text{d}}f_{2} }}{{{\text{d}}t}} = \frac{{g_{w} }}{{2p_{2} \rho }}R_{w2} f_{w} \left( {1 - f_{2} } \right) - Rs_{2w} f_{2} \left( {1 - f_{w} } \right) + \mathop \sum \limits_{i = 0}^{1} \left[ {\frac{{p_{i} }}{{p_{2} }}Es_{i2} f_{i} \left( {1 - f_{2} } \right) - R_{2i} f_{2} \left( {1 - f_{i} } \right)} \right] - \frac{{f_{2} }}{{t_{r2} }}$$
(A3)
$$\frac{{{\text{d}}f_{1} }}{{{\text{d}}t}} = \frac{{g_{w} }}{{2p_{1} \rho }}R_{w1} f_{w} \left( {1 - f_{1} } \right) - Es_{1w} f_{1} \left( {1 - f_{w} } \right) + \left[ {\frac{{p_{2} }}{{p_{1} }}R_{21} f_{2} \left( {1 - f_{1} } \right) - Es_{12} f_{1} \left( {1 - f_{2} } \right)} \right] + \left[ {\frac{{p_{0} }}{{p_{1} }}Es_{01} f_{0} \left( {1 - f_{1} } \right) - R_{10} f_{1} \left( {1 - f_{0} } \right)} \right] - \frac{{f_{1} }}{{t_{r1} }}$$
(A4)
$$\frac{{{\text{d}}f_{0} }}{{{\text{d}}t}} = \mathop \sum \limits_{i = 1}^{2n} \left[ {\frac{{p_{i} }}{{p_{0} }}R_{i0} f_{i} \left( {1 - f_{0} } \right) - Es_{0i} f_{0} \left( {1 - f_{i} } \right)} \right] + \left[ {\frac{{g_{w} }}{{2p_{0} \rho }}R_{w0} f_{w} \left( {1 - f_{0} } \right) - Es_{0w} f_{0} \left( {1 - f_{w} } \right)} \right] - \frac{{f_{0} }}{{t_{r0} }} - \frac{1}{{2p_{0} nS_{a} \rho }}\frac{{\upsilon_{g} g_{{{\text{max}}}} \left( {f_{0e} + f_{0h} - 1} \right)}}{1 + \varepsilon S}$$
(A5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaei, S., Seifouri, M., Olyaee, S. et al. The role of wetting layer and QD-layers on the performance of 1.3 µm QD-VCSEL. Appl. Phys. B 128, 86 (2022). https://doi.org/10.1007/s00340-022-07807-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07807-w

Navigation