Skip to main content
Log in

A novel fiber laser oscillator employing saddle-shaped core ytterbium-doped fiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel high-power fiber laser oscillator employing a saddle-shaped core ytterbium-doped fiber (SSCYDF) is proposed and demonstrated experimentally. The SSCYDF is designed and fabricated with a long-tapering core (diameter of ~ 30 µm at both ends and ~ 23 µm in the middle) and a constant inner cladding (diameter of ~ 400 µm) in longitudinal dimension. On the one hand, the small core section of the fiber can only support less than two modes, which is helpful for the mitigation of the transverse mode instability. On the other hand, the large core section provides a large mode area for suppression of stimulated Raman scattering. Therefore, this type of laser oscillator holds the potential advantages for both mitigation of transverse mode instability and suppression of stimulated Raman scattering. Based on the homemade SSCYDF, an all-fiber laser oscillator is constructed and investigated by pumping with laser diodes at wavelength of 976 nm and 915 nm, respectively. The maximum output power of 1312 W is achieved in the case of co-pumping at 915 nm. This is the first work, to the best of our knowledge, to validate the feasibility of using saddle-shaped core ytterbium-doped fiber with constant cladding for high-power fiber lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, A. Tünnermann, Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt. Express 19, 13218–13224 (2011)

    Article  ADS  Google Scholar 

  2. M.N. Zervas, Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers. Opt. Express 27, 19019–19041 (2019)

    Article  ADS  Google Scholar 

  3. H. Otto, C. Jauregui, J. Limpert, A. Tünnermann, Average power limit of fiber-laser systems with nearly diffraction-limited beam quality. Proc. SPIE9728, 97280E

  4. K.R. Hansen, T.T. Alkeskjold, J. Broeng, J.L. Gsgaard, Thermally induced mode coupling in rare-earth doped fiber amplifiers. Opt. Lett. 37, 2382–2384 (2012)

    Article  ADS  Google Scholar 

  5. R. Tao, P. Ma, X. Wang, P. Zhou, Z. Liu, Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers. Laser Phys. Lett. 12, 085101 (2015)

    Article  ADS  Google Scholar 

  6. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, M. Lafouti, Controlling mode instability in a 500 W ytterbium-doped fiber laser. Laser Phys. 24, 162–166 (2014)

    Article  Google Scholar 

  7. R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, Suppressing mode instabilities by optimizing the fiber coiling methods. Laser Phys. Lett. 14, 025101 (2017)

    Article  ADS  Google Scholar 

  8. A.V. Smith, J.J. Smith, Overview of a steady-periodic model of modal instability in fiber amplifiers. IEEE J. Sel. Top. Quant 20, 472–483 (2014)

    Article  ADS  Google Scholar 

  9. B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, Q. Lu, 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability. J. Opt. 20, 025802 (2018)

    Article  ADS  Google Scholar 

  10. M. Cheng, Y. Chang, A. Galvanauskas, High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-microm core highly multimode Yb-doped fiber amplifiers. Opt. Lett. 30, 358–360 (2005)

    Article  ADS  Google Scholar 

  11. R. John, G. Richard, V. Vladimir, A. David, Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering. Opt. Lett. 35, 1828–1830 (2010)

    Article  Google Scholar 

  12. T. Eidam, H. Steffen, F. Jansen, Preferential gain photonic-crystal fiber for mode stabilization at high average powers. Opt. Express 19, 8656–8661 (2011)

    Article  ADS  Google Scholar 

  13. L. Liao, F. Zhang, X. He, X. Chen, Y. Wang, H. Li, L. Yang, N. Dai, J. Li, Confined-doped fiber for effective mode control fabricated by MCVD process. Appl. Opt 57, 3244–3249 (2018)

    Article  ADS  Google Scholar 

  14. C. P. Seah, W. Y. W. Lim, S. L. Chua. A 4kW fiber amplifier with good beam quality employing confined-doped gain fiber Laser Congress 2018 (ASSL), OSA Technical Digest (Optical Society of America, 2018) pp. AM2A.2 (2018)

  15. S. Lefrancois, F. W. Wise, T. Sosnowski, S. Liu, A. Galvanauskas. Scaling mode-locked fiber lasers to high energies using chirally-coupled core fiber IEEE Conference on Lasers and Electro-Optics (CLEO), pp. 1–2 (2011)

  16. S. Lefrancois, C. Liu, T. S. Sosnowski, A. Galvanauskas, F. W. Wise, High energy amplifier similariton laser based on integrated chirally-coupled core fiber IEEE Conference on Lasers and Electro-Optics (CLEO), pp 1–2 (2012)

  17. S. Hochheim, M. Steinke, J. Koponen, T. Lowder, S. Novotny, J. Neumann, D. Kracht, Monolithic amplifier based on a chirally-coupled-core fiber. In IEEE Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) pp. 1

  18. F. Stutzki, H. Otto, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, High Power Ytterbium-doped Ge-pedestal Large-Pitch Fiber Advanced Solid-State Lasers Congress OSA Technical Digest (online) (Optical Society of America, 2013) pp. ATu3A.03

  19. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, A. Tünnermann, High average power large-pitch fiber amplifier with robust single-mode operation. Opt. Lett. 36, 689–691 (2011)

    Article  ADS  Google Scholar 

  20. M. Baumgartl, F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, A. Tünnermann, High average and peak power femtosecond large-pitch photonic-crystal-fiber laser. Opt. Lett. 36, 244–246 (2011)

    Article  ADS  Google Scholar 

  21. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, O.G. Okhotnikov, 600 W power scalable single transverse mode tapered double-clad fiber laser. Opt. Express 17, 1203–1214 (2009)

    Article  ADS  Google Scholar 

  22. B. Konstantin, A. Andrianov, M. Koptev, M. Sergey, A. Levchenko, V. Velmiskin, A. Svetlana, S. Semjonov, D. Lipatov, G. Alexey, A. Kim, M. Likhachev, Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier. Opt. Express 22, 26958–26972 (2017)

    Google Scholar 

  23. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, G. Okhotnikov, Single-mode 212 W tapered fiber laser pumped by a low-brightness source. Opt. Lett. 33, 1416–1418 (2008)

    Article  ADS  Google Scholar 

  24. B. Yang, H. Zhang, C. Shi, X. Wang, Z. Pan, Z. Wang, P. Zhou, X. Xu, High power monolithic tapered ytterbium-doped fiber laser oscillator. Opt. Express 27, 7585–7592 (2019)

    Article  ADS  Google Scholar 

  25. Y. Ye, X. Xi, C. Shi, B. Yang, X. Wang, H. Zhang, P. Zhou, X. Xu, Comparative study on transverse mode instability of fiber amplifiers based on long tapered fiber and conventional uniform fiber. Laser Phys. Lett. 16, 85109 (2019)

    Article  Google Scholar 

  26. C. Shi, X. Wang, P. Zhou, X. Xu, Q. Lu, Theoretical study of mode evolution in active long tapered multimode fiber. Opt. Express 24, 19473–19490 (2016)

    Article  ADS  Google Scholar 

  27. S.S. Aleshkina, A.E. Levchenko, O.I. Medvedkov, K.K. Bobkov, M.M. Bubnov, D.S. Lipatov, A.N. Guryanov, M.E. Likhachev, Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm. Laser IEEE Photonic Tech. L. 30, 127–130 (2018)

    Article  ADS  Google Scholar 

  28. L. Zeng, X. Xi, Y. Ye, X. Wang, B. Yang, Z. Pan, C. Shi, H. Zhang, P. Wang, P. Zhou, X. Xu, J. Chen, A 1.8 kW fiber laser oscillator employing a section of spindle-shaped core ytterbium-doped fiber. Laser Phys. Lett. 17, 95104 (2020)

    Article  Google Scholar 

  29. B. Yang, H. Zhang, 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings. Chin. Opt. Lett. 3, 31407 (2018)

    Article  Google Scholar 

  30. B. Yang, C. Shi, H. Zhang, Q. Ye, H. Pi, R. Tao, X. Wang, P. Ma, J. Leng, Z. Chen, Monolithic fiber laser oscillator with record high power. Laser Phys. Lett. 15, 75106 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61735007, 61705266). The authors wish to thank Mr. Kun Zhang, Mr. Xiaoyong Xu and Miss Siliu Liu for their help in measuring the performance of the laser oscillator in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolin Wang or Jinyan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lingfa Zeng and Xiaoming Xi co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Xi, X., Ye, Y. et al. A novel fiber laser oscillator employing saddle-shaped core ytterbium-doped fiber. Appl. Phys. B 126, 185 (2020). https://doi.org/10.1007/s00340-020-07533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07533-1

Keywords

Navigation