Skip to main content

Progress in Short-Pulse Yb-Doped Fiber Oscillators and Amplifiers

  • Chapter
  • First Online:
The Current Trends of Optics and Photonics

Part of the book series: Topics in Applied Physics ((TAP,volume 129))

Abstract

In this chapter, we first considered practical aspects in design and construction of relatively high-average-power picosecond Yb-doped fiber laser systems. Employing a highly stable diode-pumped solid-state laser as the seed source together with proper design of the fiber amplifiers, we were able to achieve an average output power of ~60 W with 73 W pumping using just 2 amplifier stages based on regular non-PM Yb-doped fiber. Applying modulation technique to generate pulse bursts at 700 kHz allowed us to optimize dynamically saturated amplifier and extract higher energies from the MOFA. This was used to improve the nonlinear conversion efficiency in the cases of second (16 % vs. 4 %) and fourth (8 % vs. 2 %) harmonic generation compared to regular pulse trains at ~250 MHz. We will also describe mode-locking techniques of fiber-based oscillators based on ring type cavities with NPE port. Our simulation results based on coupled nonlinear Schrödinger equations showed the possibility to generate either regular mode-locked pulse trains or noise-like pulses in such oscillators. Novel scheme of supercontinuum generation by noise-like pulses in normally dispersive single-mode fibers was demonstrated. The SC exhibits low threshold (43 nJ) and flat spectrum over the wavelength range of 1,050–1,250 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Röser, D. Schimpf, O. Schmidt, B. Ortaç, K. Rademaker, J. Limpert, A. Tünnermann, 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system. Opt. Lett. 32(15), 2230–2232 (2007). doi:10.1364/OL.32.002230

    Article  ADS  Google Scholar 

  2. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, A. Tünnermann, Millijoule pulse energy Q-switched short-length fiber laser. Opt. Lett. 32(11), 1551–1553 (2007). doi:10.1364/OL.32.001551

    Article  ADS  Google Scholar 

  3. G. Smith, K. Kalli, K. Sugden. Advances in femtosecond micromachining and inscription of micro and nano photonic devices, in Frontiers in Guided Wave Optics and Optoelectronics, ed. by B. Pal. InTech. doi:10.5772/39542 (2010)

  4. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nature Photon. 2(4), 219–225 (2008)

    Article  ADS  Google Scholar 

  5. M. Mielke, D. Gaudiosi, K. Kim, M. Greenberg, X. Gu, R. Cline, X. Peng, M. Slovick, N. Allen, M. Manning, M. Ferrel, N. Prachayaamorn, S. Sapers, Ultrafast fiber laser platform for advanced materials processing. J. Laser Micro/Nanoeng. 5(1), 53–58 (2010). doi:10.2961/jlmn.2010.01.0012

    Article  Google Scholar 

  6. R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997). doi:10.1109/3.594865

    Article  ADS  Google Scholar 

  7. H.M. Pask, R.J. Carman, D.C. Hanna, A.C. Tropper, C.J. Mackechnie, P.R. Barber, J.M. Dawes, Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region. Sel. Top. Quantum Electron. 1(1), 2–13 (1995). doi:10.1109/2944.468377

    Article  Google Scholar 

  8. D.J. Richardson, J. Nilsson, W.A. Clarkson, High power fiber lasers: current status and future perspectives. JOSA B 27(11), B63–B92 (2010). doi:10.1364/JOSAB.27.000B63

    Article  Google Scholar 

  9. T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010). doi:10.1364/OL.35.000094

    Article  Google Scholar 

  10. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, 131 W 220 fs fiber laser system. Opt. Lett. 30(20), 2754–2756 (2005). doi:10.1364/OL.-30.002754

    Article  ADS  Google Scholar 

  11. J. Thieme, Fiber laser—new challenges for the materials processing. Laser Tech. J. 4(3), 58–60 (2007). doi:10.1002/latj.200790168

    Article  MathSciNet  Google Scholar 

  12. M.E. Fermann, I. Hartl, Fiber laser based hyperspectral sources. Laser Phys. Lett. 6(1), 11–21 (2009). doi:10.1002/lapl.200810090

    Article  ADS  Google Scholar 

  13. A. Tuennermann, S. Nolte, J. Limpert, Femtosecond vs. picosecond laser material processing. Laser Tech. J. 7(1), 34–38 (2010). doi:10.1002/latj.201090006

    Article  Google Scholar 

  14. L. Goldberg, J.P. Koplow, R.P. Moeller, D.A.V. Kliner, High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber. Opt. Lett. 23(13), 1037–1039 (1998). doi:10.1364/OL.23.001037

    Article  ADS  Google Scholar 

  15. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.J. Fuchs, H. Zellmer, E.B. Kley, A. Tünnermann, High-average-power femtosecond fiber chirped-pulse amplification system. Opt. Lett. 28(20), 1984–1986 (2003). doi:10.1364/OL.28.001984

    Article  ADS  Google Scholar 

  16. J. Yoonchan, J. Nilsson, J.K. Sahu, D.N. Payne, R. Horley, L.M.B. Hickey, P.W. Turner, Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W. Sel. Topics Quantum Electron. 13(3), 546–551 (2007). doi:10.1109/JSTQE.2007.896639

    Article  Google Scholar 

  17. X. Wang, P. Li, H. Yang, T. Jiang, Y. Ma, Z. Fan, G. Niu, J. Yu, A. Wang, Z. Zhang, Microjoule level femtosecond optical pulses with double-cladding fiber-based nonlinear chirped-pulse amplification. Laser Phys. 21(11), 1941–1944 (2011). doi:10.1134/S1054660X11190315

    Article  ADS  Google Scholar 

  18. A. Fernández, L. Zhu, A.J. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F.Ö. Ilday, A. Baltuška, Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier. Laser Phys. 21(7), 1329–1335 (2011). doi:10.1134/S1054660X11130111

    Article  ADS  Google Scholar 

  19. C. Zheng, H.T. Zhang, W.Y. Cheng, M. Liu, P. Yan, M.L. Gong, All-fiber millijoule energy and nanoseconds pulse operation of a high beam quality multi-stage pulse-pumped Yb-doped amplifier cascade. Laser Phys. 22(3), 605–608 (2012). doi:10.1134/S1054660X12030309

    Article  ADS  Google Scholar 

  20. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2007)

    Google Scholar 

  21. R.H. Stolen, Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron. 15(10), 1157–1160 (1979). doi:10.1109/JQE.1979.1069913

    Article  ADS  Google Scholar 

  22. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81(1), 163–234 (2009). doi:10.1103/RevModPhys.81.163

    Article  ADS  Google Scholar 

  23. X. Liu, D. Du, G. Mourou, Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 33(10), 1706–1716 (1997). doi:10.1109/3.631270

    Article  ADS  Google Scholar 

  24. K. Sugioka, M. Meunier, A. Pique, Laser Precision Microfabrication (Springer, Berlin, 2010)

    Book  Google Scholar 

  25. A.K. Zaytsev, C.L. Wang, C.H. Lin, C.L. Pan, Robust diode-end-pumped Nd:GdVO4 laser passively mode-locked with saturable output coupler. Laser Phys. 21(12), 2029–2035 (2011). doi:10.1134/S1054660X11210316

    Article  ADS  Google Scholar 

  26. A.K. Zaytsev, C.L. Wang, C.H. Lin, Y.J. You, F.H. Tsai, C.L. Pan, Effective pulse recompression after nonlinear spectral broadening in picosecond Yb-doped fiber amplifier. Laser Phys. 22(2), 447–450 (2012). doi:10.1134/S1054660X12020259

    Article  ADS  Google Scholar 

  27. A.A.M. Saleh, R.M. Jopson, J.D. Evankow, J. Aspell, Modeling of gain in erbium-doped fiber amplifiers. IEEE Photon. Tech. Lett. 2(10), 714–717 (1990). doi:10.1109/68.60769

    Article  ADS  Google Scholar 

  28. C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad, Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE J. Quantum Electron. 30(8), 1817–1830 (1994). doi:10.1109/3.301646

    Article  ADS  Google Scholar 

  29. T. Pfeiffer, H. Bulow, Analytical gain equation for erbium-doped fiber amplifiers including mode field profiles and dopant distribution. IEEE Photon. Tech. Lett. 4(5), 449–451 (1992). doi:10.1109/68.136482

    Article  ADS  Google Scholar 

  30. J.W. Dawson, M.J. Messerly, R.J. Beach, M.Y. Shverdin, E.A. Stappaerts, A.K. Sridharan, P.H. Pax, J.E. Heebner, C.W. Siders, C.P.J. Barty, Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Express 16(17), 13240–13266 (2008). doi:10.1364/OE.16.013240

    Article  ADS  Google Scholar 

  31. M.J.F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, NY, 2001)

    Book  Google Scholar 

  32. Y.-J. You, C.-H. Lin, A. Zaytsev, F.-H. Tsai, C.-L. Wang, C.-L. Pan, Optimal design of a high-power picosecond laser system using a dual-stage ytterbium-doped fibre amplifier. Laser Phys. 23(7), 075114 (2013). doi:10.1088/1054-660X/23/7/075114

    Article  Google Scholar 

  33. M.J. Hekmat, M.M. Dashtabi, S.R. Manavi, E. Hassanpour, R. Massudi, Selection of suitable pump diode laser parameters and their effects on efficiency and optimum length of Yb-doped double clad fiber lasers. Laser Phys. 22(10), 1581–1585 (2012). doi:10.1134/S1054660-X12100088

    Article  ADS  Google Scholar 

  34. R.I. Laming, J.E. Townsend, D.N. Payne, F. Meli, G. Grasso, E.J. Tarbox, High-power erbium-doped-fiber amplifiers operating in the saturated regime. IEEE Photon. Tech. Lett. 3(3), 253–255 (1991). doi:10.1109/68.79772

    Article  ADS  Google Scholar 

  35. E. Desurvire, Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime. IEEE Photon. Tech. Lett. 4(7), 711–714 (1992). doi:10.1109/68.145247

    Article  ADS  Google Scholar 

  36. M. Hofer, M.H. Ober, F. Haberl, M.E. Fermann, Characterization of ultrashort pulse formation in passively mode-locked fiber lasers. IEEE J. Quantum Electron. 28(3), 720–728 (1992). doi:10.1109/3.124997

    Article  ADS  Google Scholar 

  37. A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, C.-L. Pan, Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers. Opt. Express 21(13), 16056–16062 (2013). doi:10.1364/OE.21.016056

    Article  ADS  Google Scholar 

  38. H. Lim, F.Ö. Ilday, F.W. Wise, Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser. Opt. Lett. 28(8), 660–662 (2003). doi:10.1364/OL.28.000660

    Article  ADS  Google Scholar 

  39. K. Tamura, E.P. Ippen, H.A. Haus, L.E. Nelson, 77-fs pulse generation from a stretched-pulse mode-locked all-fiberring laser. Opt. Lett. 18(13), 1080–1082 (1993). doi:10.1364/OL.18.00-1080

    Article  ADS  Google Scholar 

  40. A.K. Zaytsev, C.H. Lin, Y.J. You, F.H. Tsai, C.L. Wang, C.L. Pan, A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser. Laser Phys. Lett. 10(4), 045104 (2013). doi:10.1364/OE.21.016056

    Article  ADS  Google Scholar 

  41. F. ÖIlday, J.R. Buckley, H. Lim, F.W. Wise, W.G. Clark, Generation of 50-fs, 5-nJ pulses at 1.03?m from a wave-breaking-free fiber laser. Opt. Lett. 28(15):1365–1367. (2003) doi:10.1364/OL.28.001365

  42. J.R. Buckley, S.W. Clark, F.W. Wise, Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation. Opt. Lett. 31(9), 1340–1342 (2006). doi:10.1364/OL.31.001340

    Article  ADS  Google Scholar 

  43. M.E. Fermann, V.I. Kruglov, B.C. Thomsen, J.M. Dudley, J.D. Harvey, Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84(26), 6010–6013 (2000)

    Article  ADS  Google Scholar 

  44. A. Chong, J. Buckley, W. Renninger, F. Wise, All-normal-dispersion femtosecond fiber laser. Opt. Express 14(21), 10095–10100 (2006). doi:10.1364/OE.14.010095

    Article  ADS  Google Scholar 

  45. O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E.A. Kuzin, J.C. Hernández-García, Adjustable noiselike pulses from a figure-eight fiber laser. Appl. Opt. 50(25), E24–E31 (2011). doi:10.1364/AO.50.000E24

    Article  ADS  Google Scholar 

  46. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, A. Latkin, Generation of double-scale femto/pico-secondoptical lumps in mode-locked fiber lasers. Opt. Exp. 17(23), 20707–20713 (2009). doi:10.1364/OE.17.020707

    Article  ADS  Google Scholar 

  47. Y. An, D. Shen, W. Zhao, J. Long, Characteristics of pulse evolution in mode-locked thulium-doped fiber laser. Opt. Comm. 285(7), 1949–1953 (2012). doi:10.1016/j.optcom.2011.12.001

    Article  ADS  Google Scholar 

  48. S.M. Kobtsev, S.V. Smirnov, Fiber lasers mode-locked due to nonlinear polarization evolution: Golden mean of cavity length. Laser Phys. 21(2), 272–276 (2011). doi:10.1134/S1054660-X11040050

    Article  ADS  Google Scholar 

  49. L.M. Zhao, D.Y. Tang, J. Wu, X.Q. Fu, S.C. Wen, Noise-like pulse in a gain-guided soliton fiber laser. Opt. Exp. 15(5), 2145–2150 (2007). doi:10.1364/OE.15.002145

    Article  ADS  Google Scholar 

  50. M. Horowitz, Y. Barad, Y. Silberberg, Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Opt. Lett. 22(11), 799–801 (1997). doi:10.1364/OL.22.000-799

    Article  ADS  Google Scholar 

  51. M. Horowitz, Y. Silberberg, Control of noiselike pulse generation in erbium-doped fiber lasers. IEEE Photon. Tech. Lett. 10(10), 1389–1391 (1998). doi:10.1109/68.720270

    Article  ADS  Google Scholar 

  52. Y. Li, A. Hoskins, F. Schlottau, K.H. Wagner, C. Embry, W.R. Babbitt, Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers. Appl. Opt. 45(25), 6409–6420 (2006). doi:10.1364/AO.45.006409

    Article  ADS  Google Scholar 

  53. J.C. Hernandez-Garcia, O. Pottiez, J.M. Estudillo-Ayala, Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser. Laser Phys. 22(1), 221–226 (2012). doi:10.1134/S1054660X1123006X

    Article  Google Scholar 

  54. J.C. Hernandez-Garcia, O. Pottiez, J.M. Estudillo-Ayala, R. Rojas-Laguna, Numerical analysis of a broadband spectrum generated in a standard fiber by noise-like pulses from a passively mode-locked fiber laser. Opt. Comm. 285(7), 1915–1919 (2012). doi:10.1016/j.optcom.2011.12.069

    Article  ADS  Google Scholar 

  55. L.M. Zhao, D.Y. Tang, Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Appl. Phys. B 83(4), 553–557 (2006). doi:10.1007/s00340-006-2179-0

    Article  ADS  MathSciNet  Google Scholar 

  56. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006). doi:10.1103/RevModPhys.78.1135

    Article  ADS  Google Scholar 

  57. C. Lin, V.T. Nguyen, W.G. French, Wideband near-I.R. continuum (0.7–2.1 μm) generated in low-loss optical fibres. Electron. Lett. 14(25), 822–823 (1978). doi:10.1049/el:19780556

    Article  ADS  Google Scholar 

  58. J.M. Dudley, J.R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  59. J. Santhanam, G.P. Agrawal, Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Opt. Comm. 222(1–6), 413–420 (2003). doi:10.1016/S0030-4018(03)01561-X

    Article  ADS  Google Scholar 

  60. I. Ilev, H. Kumagai, K. Toyoda, I. Koprinkov, Highly efficient widebandcontinuum generation in a single-modeoptical fiber by powerful broadband laser pumping. Appl. Opt. 35(15), 2548–2553 (1996). doi:10.1364/AO.35.002548

    Article  ADS  Google Scholar 

  61. R.S. Watt, C.F. Kaminski, J. Hult, Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy. Appl. Phys. B 90(1), 47–53 (2008). doi:10.1007/s00340-007-2812-6

    Article  ADS  Google Scholar 

  62. H. Chen, Y. Lei, S. Chen, J. Hou, Q. Lu, Experimentally investigate the nonlinear amplifying process of high power picoseconds fiber amplifier. Opt. Laser Tech. 47, 278–282 (2013). doi:10.1016/j.optlastec.2012.09.010

    Article  ADS  Google Scholar 

  63. D. Karnakis, E.K. Illy, M.R.H. Knowles, E. Gu, M.D. Dawson, High-throughput scribing for the manufacture of LED components. SPIE 5366 (2004) doi:10.1117/12.531685

  64. P. Deladurantaye, A. Cournoyer, Drolet M, Desbiens L, Lemieux D, Briand M, Taillon Y (2011) Material micromachining using bursts of high repetition rate picosecond pulses from a fiber laser source. Proc. SPIE 7914. doi:10.1117/12.875265

  65. H. Kalaycioglu, K. Eken, F.Ö. Ilday, Fiber amplification of pulse bursts up to 20 μJ pulse energy at 1 kHz repetition rate. Opt. Lett. 36(17), 3383–3385 (2011). doi:10.1364/OL.36.003383

    Article  ADS  Google Scholar 

  66. H. Kalaycioglu, Y.B. Eldeniz, Ö. Akçaalan, S. Yava, K. Gürel, M. Efe, F.Ö. Ilday, 1 mJ pulse bursts from a Yb-doped fiber amplifier. Opt. Lett. 37(13), 2586–2588 (2012). doi:10.1364/OL.-37.002586

    Article  ADS  Google Scholar 

  67. Y. Ren, C.W. Cheng, J.K. Chen, Y. Zhang, D.Y. Tzou, Thermal ablation of metal films by femtosecond laser bursts. Int. J. Therm. Sci. 70, 32–40 (2013). doi:10.1016/j.ijthermalsci.2013.03.003

    Article  Google Scholar 

  68. D.N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, F. Salin, Compensation of pulse-distortion in saturated laser amplifiers. Opt. Exp. 16(22), 17637–17646 (2008). doi:10.1364/OE.16.017637

    Article  ADS  Google Scholar 

  69. A. Malinowski, K.T. Vu, K.K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, D.J. Richardson, High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping. Opt. Express 17(23), 20927–20937 (2009). doi:10.1364/OE.17.020927

    Article  Google Scholar 

  70. A. Agnesi, L. Carrà, P. Dallocchio, F. Pirzio, G. Reali, S. Lodo, G. Piccinno, 50-mJ macro-pulses at 1,064 nm from a diode-pumped picosecond laser system. Opt. Exp. 19(21), 20316–20321 (2011). doi:10.1364/OE.19.020316

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ci-Ling Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pan, CL., Zaytsev, A., Lin, CH., You, YJ. (2015). Progress in Short-Pulse Yb-Doped Fiber Oscillators and Amplifiers. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics