Skip to main content
Log in

Solving an old puzzle: fine structure of diffraction spots from an azo-polymer surface relief grating

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the experimental and theoretical interpretation of the diffraction of a probe beam during inscription of a surface relief grating with an interference pattern into a photo-responsive polymer film. For this, we developed a set-up allowing for the simultaneous recording of the diffraction efficiency (DE), the fine structure of the diffraction spot and the topographical changes, in situ and in real time while the film is irradiated. The time dependence of the DE, as the surface relief deepens, follows a Bessel function exhibiting maxima and minima. The size of the probe beam relative to the inscribed grating (i.e., to the size of the writing beams) matters and has to be considered for the interpretation of the DE signal. It is also at the origin of a fine structure within the diffraction spot where ring-shaped features appear once an irradiation time corresponding to the first maximum of the DE has been exceeded.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N.S. Yadavalli, F. Linde, A. Kopyshev, S. Santer, ACS Appl. Mater. Interfaces. 5, 7743 (2013)

    Article  Google Scholar 

  2. G. Di Florio, E. Bründermann, N.S. Yadavalli, S. Santer, M. Havenith, Soft Mater. 12, 98 (2014)

    Article  Google Scholar 

  3. S. Loebner, N. Lomadze, A. Kopyshev, M. Koch, O. Guskova, M.G. Saphiannikova, S.A. Santer, J. Phys. Chem. B 122, 2001 (2018)

    Article  Google Scholar 

  4. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, P. Maddalena, Nat. Commun. 3, 989 (2012)

    Article  ADS  Google Scholar 

  5. T. Grosjean, D. Courjon, Opt. Express 14, 2203 (2006)

    Article  ADS  Google Scholar 

  6. J.P. Vernon, S.V. Serak, R.S. Hakobyan, A.K. Aleksanyan, V.P. Tondiglia, T.J. White, T.J. Bunning, N.V. Tabiryan, Appl. Phys. Lett. 103, 201101 (2013)

    Article  ADS  Google Scholar 

  7. P. Rochon, E. Batalla, A. Natansohn, Appl. Phys. Lett. 66, 136 (1995)

    Article  ADS  Google Scholar 

  8. D.Y. Kim, S.K. Tripathy, L. Li, J. Kumar, Appl. Phys. Lett. 66, 1166 (1995)

    Article  ADS  Google Scholar 

  9. A. Emoto, E. Uchida, T. Fukuda, Polymers 4, 150 (2012)

    Article  Google Scholar 

  10. J. Vapaavuori, A. Goulet-Hanssens, I.T.S. Heikkinen, C.J. Barrett, A. Priimagi, Chem. Mater. 26, 5089 (2014)

    Article  Google Scholar 

  11. J.E. Koskela, J. Vapaavuori, R.H.A. Ras, A. Priimagi, ACS Macro Lett. 3, 1196 (2014)

    Article  Google Scholar 

  12. M. Saccone, V. Dichiarante, A. Forni, A. Goulet-Hanssens, G. Cavallo, J. Vapaavuori, G. Terraneo, C.J. Barrett, G. Resnati, P. Metrangolo, A. Priimagi, J. Mater. Chem. C 3, 759 (2015)

    Article  Google Scholar 

  13. N.S. Yadavalli, M. Saphiannikova, S. Santer, Appl. Phys. Lett. 105, 051601 (2014)

    Article  ADS  Google Scholar 

  14. N.S. Yadavalli, M. Saphiannikova, N. Lomadze, L.M. Goldenberg, S. Santer, Appl. Phys. A 113, 263 (2013)

    Article  ADS  Google Scholar 

  15. N.S. Yadavalli, S. Santer, J. Appl. Phys. 113, 224304 (2013)

    Article  ADS  Google Scholar 

  16. M. Saphiannikova, V. Toshchevikov, J. Soc. Inf. Disp. 23, 146 (2015)

    Article  Google Scholar 

  17. V. Toshchevikov, J. Ilnytskyi, M. Saphiannikova, J. Phys. Chem. Lett. 8, 1094 (2017)

    Article  Google Scholar 

  18. M. Dumont, A. El Osman, Chem. Phys. 245, 437 (1999)

    Article  Google Scholar 

  19. B. Yadav, J. Domurath, K. Kim, S. Lee, M. Saphiannikova, J. Phys. Chem. B 123, 3337 (2019)

    Article  Google Scholar 

  20. G. Di Florio, E. Brundermann, N.S. Yadavalli, S.A. Santer, M. Havenith, Nano Lett. 14, 5754 (2014)

    Article  ADS  Google Scholar 

  21. N.S. Yadavalli, D. Korolkov, J. Moulin, M. Krutyeva, S. Santer, ACS Appl. Mater. Interfaces. 6, 11333 (2014)

    Article  Google Scholar 

  22. V. Toshchevikov, M. Saphiannikova, G. Heinrich, J. Phys. Chem. B 116, 913 (2012)

    Article  Google Scholar 

  23. V. Toshchevikov, M. Saphiannikova, J. Phys. Chem. B 118, 12297 (2014)

    Article  Google Scholar 

  24. M. Saphiannikova, D. Neher, J. Phys. Chem. B 109, 19428 (2005)

    Article  Google Scholar 

  25. V. Toshchevikov, M. Saphiannikova, G. Heinrich, J. Phys. Chem. B 113, 5032 (2009)

    Article  Google Scholar 

  26. H.J. Eichler, P. Günther, D.W. Pohl, Laser-induced Dynamic Gratings (Springer, Berlin, 1986)

    Book  Google Scholar 

  27. X.L. Jiang, L. Li, D.Y. Kim, V. Shivshankar, S.K. Tripathy, Appl. Phys. Lett. 68, 2618 (1996)

    Article  ADS  Google Scholar 

  28. J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, Z. Sedlakova, Opt. Mater. 29, 1756 (2007)

    Article  ADS  Google Scholar 

  29. H. Taunaumang, M. Solyga, M.O. Tija, A. Miniewicz, Thin Solid Films 461, 316 (2004)

    Article  ADS  Google Scholar 

  30. O. Kulikovska, L.M. Goldenberg, J. Stumpe, Chem. Mater. 19, 3343 (2007)

    Article  Google Scholar 

  31. L. Kulikovsky, O. Kulikovska, L.M. Goldenberg, J. Stumpe, ACS Appl. Mater. Interfaces. 1(8), 1739 (2009)

    Article  Google Scholar 

  32. L.M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Stumpe, J. Mater. Chem. 19, 8068 (2009)

    Article  Google Scholar 

  33. F.L. Labarthet, T. Buffeteau, C. Sourisseau, J. Phys. Chem. B 103, 6690 (1999)

    Article  Google Scholar 

  34. F.L. Labarthet, T. Buffeteau, C. Sourisseau, J. Phys. Chem. B 102, 2654 (1998)

    Article  Google Scholar 

  35. F.L. Labarthet, T. Buffeteau, C. Sourisseau, Appl. Phys. B 74, 129 (2002)

    Article  ADS  Google Scholar 

  36. F.L. Labarthet, P. Rochon, A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999)

    Article  ADS  Google Scholar 

  37. J. Jelken, S. Santer, RSC Adv. 9, 20295 (2019)

    Article  Google Scholar 

  38. L. Frey, J.M. Jonathan, A. Villing, G. Roosen, Opt. Commun. 165, 153 (1999)

    Article  ADS  Google Scholar 

  39. M. Born, E. Wolf, Principles of optics, 6th edn. (Pergamon Press, Oxford, 1980)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Helmholtz Graduate School on Macromolecular Bioscience (Teltow, Germany). We thank Burkhard Stiller and Andreas Pucher for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Henkel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 410 kb)

Supplementary material 2 (MP4 6972 kb)

Appendix

Appendix

We get a tractable calculation of the diffraction efficiency and the spot profile, when the sample is modeled as a reflecting phase screen. This means that the light wave, after (partial) reflection from the sample, is given by a complex reflection function that contains a spatially modulated phase [39]

$$\psi_{\text{out}} \left( \varvec{r} \right) = R { \exp }\left[ {i\varphi \left( {x,y} \right)} \right] \psi_{\text{in}} \left( \varvec{r} \right)$$
(3)

where \(R\) is the overall reflection amplitude and \(x, y\) are coordinates parallel to the screen [we write \(R \psi_{\text{in}} \left( \varvec{r} \right)\) although this wave has actually a reversed propagation direction due to reflection from the non-modulated screen (specular order)]. We first compute the diffraction pattern in the far field: it is given in the Fraunhofer–Kirchhoff approximation, by

$$I\left( \varvec{q} \right) = \left| {\tilde{\psi }_{\text{out}} \left( \varvec{q} \right)} \right|^{2}$$
(4)

where \(\tilde{\psi }_{\text{out}} \left( \varvec{q} \right)\) is the the 2D Fourier transform of \(\psi_{\text{out}} \left( \varvec{r} \right)\). We consider first the simple case of an infinitely extended phase grating where \(\varphi \left( {x, y} \right) = u { \sin }\left( {\varvec{G} \cdot \varvec{r}} \right)\) and \(\varvec{G}\) is the grating vector. Then, the outgoing wave is

$$\psi_{\text{out}} \left( \varvec{r} \right) = R { \exp }\left[ {iu\sin \left( {\varvec{G} \cdot \varvec{r}} \right)} \right] \psi_{\text{in}} \left( \varvec{r} \right)$$
(5)

The first factor (the phase modulation) is periodic in \(\varvec{r}\) along the direction \(\varvec{G}\) with period \(\varLambda = 2\pi /G\). It can be expanded in a Fourier series

$${ \exp }\left[ {iu\sin \left( {\varvec{G} \cdot \varvec{r}} \right)} \right] = \mathop \sum \limits_{n} J_{n} \left( u \right){ \exp }\left( {in\varvec{G} \cdot \varvec{r}} \right)$$
(6)

with coefficients \(J_{n} \left( u \right)\) given by Bessel functions (Jacobi-Anger expansion). If the incoming wave is a plane wave, \(\psi_{\text{in}} \left( \varvec{r} \right) = \sqrt {I_{\text{in}} } { \exp }\left( {i\varvec{k}_{\text{in}} \cdot \varvec{r}} \right)\), the outgoing wave contains the wave vectors

$$\varvec{k}_{n} = \varvec{k}_{0} + n\varvec{G}$$
(7)

We may choose the \(x\)-axis along \(\varvec{G}\) and introduce the diffraction angle \(\theta_{n}\) via \(k_{nx} = k\sin \theta_{n}\) with the wavenumber \(k = 2\pi /\lambda\). The discrete diffraction orders appear under the angles (Bragg–Laue condition)

$$\sin \theta_{n} - \sin \theta_{0} = \frac{nG\lambda }{2\pi }$$
(8)

where \(\lambda\) is the wavelength of the wave. For an infinite grating, the diffraction efficiencies are thus given by the squared coefficients in Eq. (6):

$$\eta_{n} = \frac{{I_{n} }}{{I_{\text{in}} }} = \left| R \right|^{2} \left| {J_{n } \left( u \right)} \right|^{2}$$
(9)

In the experiment, the grating does not have a constant modulation amplitude u, but rather a circular shape set by the profile of the writing beams. We assume here a Gaussian grating profile

$$\varphi \left( {x, y} \right) = u\left( \rho \right)\sin Gx\quad u\left( \rho \right) = u e^{{ - \rho^{2} /2w^{2} }}$$
(10)

with \(\rho^{2} = x^{2} + y^{2}\). The width \(w\) is much larger than the grating period \(\varLambda\). This motivates an approximate evaluation of the Fourier transform \(\tilde{\psi }_{\text{out}} \left( \varvec{q} \right)\) (the far field)

$$\tilde{\psi }_{\text{out}} \left( \varvec{q} \right) = R\sqrt {I_{\text{in}} } \int {\text{d}}x\;{\text{d}}y\;{\text{e}}^{{iu\left(\varvec{\rho}\right)\sin Gx}} {\text{exp}}\left[ {i\left( {\varvec{k}_{\text{in}} - \varvec{q}} \right) \cdot \varvec{r}} \right]$$
(11)

that we explain in the following. We split the integral along x into periods of size \(\varLambda\) centered in \(x_{l} = l\varLambda\) and replace \(x \to x_{l} + x\) with \(- \varLambda /2 \le x \le \varLambda /2\) and \(l = 0, \pm 1, \pm 2, \cdots\). We also focus on a far-field direction close to the n’th order and set \(q_{x} = k_{{{\text{in}} x}} + nG + \delta q\) with \(\delta q \ll G\) (angular fine structure of the diffraction spot). Observe that \(\left( {q_{x} - k_{{{\text{in}} x}} } \right)\left( {x_{l} + x} \right) \equiv \delta q x_{l} + \left( {nG + \delta q} \right)x\) mod 2π. We apply a multiple-scale approximation and assume that the grating modulation \(u\left( \rho \right)\) varies slowly across the grating period \(\varLambda\). This means that we can set

$$u\left( \rho \right) \approx u\left( {\rho_{l} } \right),\quad \rho_{l}^{2} = x_{l}^{2} + y^{2}$$
(12)

The integral along x over one grating period then gives

$$\mathop \int \limits_{ - \varLambda /2}^{\varLambda /2} {\text{d}}x e^{{iu\left( {\rho_{l} } \right)\sin Gx}} { \exp }\left[ { - i\left( {nG + \delta q} \right)x} \right] \approx \varLambda J_{n} \left( {u\left( {\rho_{l} } \right)} \right)$$
(13)

where a small phase \(\left( {\left| {x \delta q} \right| \le \varLambda \delta q} \right)\) was neglected. (This will be justified from the end result Eq. (15) below.) The sum over the grating periods is replaced back by an integral

$$\begin{aligned} \tilde{\psi }_{\text{out}} \left( \varvec{q} \right) & \approx R\sqrt {I_{\text{in}} } \mathop \sum \limits_{l} \varLambda \int {\text{d}}y\;J_{n} \left( {u\left( {\rho_{l} } \right)} \right) e^{{ - i\delta \varvec{q} \cdot \varvec{r}_{l} }} \\ & \approx R\sqrt {I_{\text{in}} } \int d^{2} r\;J_{n} \left( {u\left( \rho \right)} \right) e^{{ - i\delta \varvec{q} \cdot \varvec{r}}} \\ \end{aligned}$$
(14)

This is the key result of the calculation: the shape of the diffracted beam (as measured by the angular deviation \(\delta q\) from the n’th order) is the Fourier transform of the local diffraction amplitude (the Bessel function \(J_{n} \left( {u\left( \rho \right)} \right)\)).

We finally compute the near-field profile of the diffraction spot. It is easy to read off the back Fourier transform from Eq. (14). We get for the beam shape in the n’th order:

$$\psi_{n} \left( \varvec{r} \right) = R\sqrt {I_{\text{in}} } J_{n} \left( {u\left( \rho \right)} \right)$$
(15)

This proves Eq. (1) in the main text.

To evaluate Eq. (14), one simplification is possible by switching to polar coordinates: \({ \exp }\left( { - i\delta \varvec{q} \cdot \varvec{r}} \right) = { \exp }\left( { - i\rho \delta q\cos \phi } \right)\). The \(\phi\) integral gives \(2\pi J_{0} \left( {\rho \delta q} \right)\), and we finally get

$$\tilde{\psi }_{\text{out}} \left( \varvec{q} \right) \approx 2\pi R\sqrt {I_{\text{in}} } \mathop \int \limits_{0}^{\infty } \rho d\rho J_{n} \left( {u e^{{ - \rho^{2} /2w^{2} }} } \right) J_{0} \left( {\rho \delta q} \right)$$
(16)

For large \(\rho \gg w\), the Bessel function \(J_{n}\) becomes proportional to \(e^{{ - n\rho^{2} /2w^{2} }}\) so that the integral converges for \(n > 0\). Its numerical evaluation presents no difficulties. We can estimate its typical width as a function of the scattering wave vector as \(\delta q\sim 1/w\). Since we assumed a scale \(w\) for the grating profile much wider than the period \(\varLambda\), the phase neglected in Eq. (13) is at most \({\mathcal{O}}\left( {\varLambda /w} \right) \ll 1\).

Finally, we consider the case that incident and specular beams have a Gaussian profile

$$\psi_{\text{in}} \left( \varvec{r} \right) = R\sqrt {I_{\text{in}} } e^{{i\varvec{k}_{\text{in}} \cdot \varvec{r}}} { \exp }\left( { - \rho^{2} /2\sigma^{2} } \right)$$
(17)

We assume that the waist of the probe beam \(\sigma\) is also larger than the grating period. The preceding calculation can be carried through, and we get Eq. (16) with an additional factor \({ \exp }\left( { - \rho^{2} /2\sigma^{2} } \right)\) under the integral. The predictions of this theory are illustrated in Fig. 3. The angular profile of the diffraction spot is shown in Fig. 3a, assuming that the probe beam is matched in size to the grating covered area (\(\sigma = w\)). As the grating amplitude grows (from bottom to top), a “dark ring” enters the spot profile (top curves). This happens when the total diffracted intensity is beyond its maximum, as shown in Fig. 3b (dots on the red curve). There, we also show the influence of the probe beam size: a narrow beam (\(\sigma = w/2\)) diffracts similar to an infinite grating, with an efficiency related to the Bessel function \(\left| {J_{1} \left( u \right)} \right|^{2}\) that oscillates beyond the maximum efficiency. For a much wider beam (\(\sigma \gg w\)), the diffraction efficiency increases monotonously. An analytical proof of this property is given in the Supporting Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelken, J., Henkel, C. & Santer, S. Solving an old puzzle: fine structure of diffraction spots from an azo-polymer surface relief grating. Appl. Phys. B 125, 218 (2019). https://doi.org/10.1007/s00340-019-7331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7331-8

Navigation