Skip to main content
Log in

Structuring of photosensitive material below diffraction limit using far field irradiation

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report on in-situ atomic force microscopy (AFM) studies of topographical changes in azobenzene-containing photosensitive polymer films that are irradiated with light interference patterns. We have developed an experimental setup consisting of an AFM combined with two-beam interferometry that permits us to switch between different polarization states of the two interfering beams while scanning the illuminated area of the polymer film, acquiring corresponding changes in topography in-situ. This way, we are able to analyze how the change in topography is related to the variation of the electrical field vector within the interference pattern. It is for the first time that with a rather simple experimental approach a rigorous assignment can be achieved. By performing in-situ measurements we found that for a certain polarization combination of two interfering beams [namely for the SP (↕, ↔) polarization pattern] the topography forms surface relief grating with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We believe that this relatively simple method could be extremely valuable to, for instance, produce structural features below the diffraction limit at high-throughput, and this could significantly contribute to the search of new fabrication strategies in electronics and photonics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhao, T. Ikeda, Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  2. C. Barrett, P. Rochon, A. Natansohn, J. Phys. Chem. 100, 8836 (1996)

    Article  Google Scholar 

  3. V. Toschevikov, M. Saphiannikov, G. Heirich, J. Phys. Chem. B 113, 5032 (2009)

    Article  Google Scholar 

  4. V. Toschevikov, M. Saphiannikov, G. Heirich, J. Phys. Chem. B 116, 913 (2012)

    Article  Google Scholar 

  5. M. Saphiannikova, T.M. Geue, O. Henneberg, K. Morawetz, U. Pietsch, J. Chem. Phys. 120, 4039 (2004)

    Article  ADS  Google Scholar 

  6. K.G. Yager, C.J. Barrett, J Photochem. Photobiol. A: Chem. 182, 250 (2006)

    Article  Google Scholar 

  7. H. Rau, in Photochemistry and Photophysics, vol. III, ed. by J.F. Rabeck (CRC, Boca Raton, 2009), p. 119

    Google Scholar 

  8. T. Todorov, L. Nikolova, T. Tomova, Appl. Opt. 23, 4309 (1984)

    Article  ADS  Google Scholar 

  9. C. Jones, S. Day, Nature 351, 15 (1991)

    Article  ADS  Google Scholar 

  10. R. Loucif-Saibi, K. Nakatani, J.A. Delaire, M. Dumont, Z. Sekkat, Chem. Mater. 5, 229 (1993)

    Article  Google Scholar 

  11. C.J. Barrett, P.L. Rochon, A.L. Natasohn, J. Chem. Phys. 109, 1505 (1998)

    Article  ADS  Google Scholar 

  12. S. Bian, L. Li, J. Kumar, D.Y. Kim, S.K. Tripathy, Appl. Phys. Lett. 73, 1817 (1998)

    Article  ADS  Google Scholar 

  13. J. Kumar, L. Li, X.L. Xiang, D.Y. Kim, T. Sung-Lee, S.K. Tripathy, Appl. Phys. Lett. 72, 2096 (1998)

    Article  ADS  Google Scholar 

  14. X.L. Jiang, L. Li, J. Kumar, D.Y. Kim, S.K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998)

    Article  ADS  Google Scholar 

  15. T.G. Pedersen, P.M. Johensen, N.C.R. Holme, P.S. Ramanujam, S. Hvilsted, Phys. Rev. Lett. 80, 89 (1998)

    Article  ADS  Google Scholar 

  16. D. Bublitz, B. Fleck, L. Wenke, Appl. Phys. B 72, 931 (2001)

    Article  ADS  Google Scholar 

  17. F. Fabbri, D. Garrot, K. Lahlil, J.P. Boilot, Y. Lassailly, J. Peretti, J. Phys. Chem. B 115, 1363 (2011)

    Article  Google Scholar 

  18. F. Lagugne Labarthet, C. Sourisseau, R.D. Schaller, R.J. Saykally, P. Rochon, J. Phys. Chem. B 108, 17059 (2004)

    Article  Google Scholar 

  19. O. Cha-Hwan, H. Ui-Jang, K. Jung-Sung, J. Korean Phys. Soc. 50, 1022 (2007)

    Article  Google Scholar 

  20. H.S. Kang, S. Lee, J. Park, Adv. Funct. Mater. 21, 4412 (2011)

    Article  Google Scholar 

  21. L.M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, S. Schrader, Opt. Mater. Express 2, 11 (2012)

    Article  Google Scholar 

  22. L.M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, S. Schrader, Adv. Mater. 24, 3339 (2012)

    Article  Google Scholar 

  23. T. König, V.V. Tsukruk, S. Santer, ACS Appl. Mater. Interfaces 5, 6009 (2013)

    Article  Google Scholar 

  24. N.S. Yadavalli, F. Linde, A. Kopyshev, S. Santer, ACS Appl. Mater. Interfaces (2013). doi:10.1021/am400682w

    Google Scholar 

  25. D. Elfström, B. Guilhabert, J. McKendry, S. Poland, Z. Gong, D. Massoubre, E. Richardson, B.R. Rae, G. Valentine, G. Blanco-Gomez, E. Gu, J.M. Cooper, R.K. Henderson, M.D. Dawson, Opt. Express 17, 23522 (2009)

    Article  ADS  Google Scholar 

  26. N. Seok-In, K. Seok-Soon, J. Jang, O. Seung-Hwan, K. Juhwan, K. Dong-Yu, Adv. Funct. Mater. 18, 3956 (2008)

    Article  Google Scholar 

  27. D. Sawaki, J. Amako, Proc. SPIE 7202, 72020L.1 (2009)

    Article  Google Scholar 

  28. G.D. Kubiak, D.R. Kania, OSA Trends in Optics and Photonics. 4 (1996)

  29. D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 4, 83 (2010)

    Article  ADS  Google Scholar 

  30. X. Luo, T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004)

    Article  ADS  Google Scholar 

  31. T. König, S. Santer, Nanotechnology 23, 485304 (2012)

    Article  Google Scholar 

  32. T. König, S. Santer, Nanotechnology 23, 155301 (2012)

    Article  ADS  Google Scholar 

  33. T. König, N.S. Yadavalli, S. Santer, Plasmonics 7, 535 (2012)

    Article  Google Scholar 

  34. T. König, L.M. Goldenberg, O. Kulikovska, L. Kulikovsky, J. Stumpe, S. Santer, Soft Matter 7, 4174 (2011)

    Article  ADS  Google Scholar 

  35. T. König, N.S. Yadavalli, S. Santer, J. Mater. Chem. 22, 5945 (2012)

    Article  Google Scholar 

  36. A. Sundaramurthy, P.J. Schuck, N.R. Conley, D.P. Fromm, G.S. Kino, W.E. Moerner, Nano Lett. 6, 355 (2006)

    Article  ADS  Google Scholar 

  37. Z. Sekkat, H. Ishitobi, M. Tanabe, S. Shoji, S. Kawata, Moroc. J. Condens. Mater. 11, 111 (2009)

    Google Scholar 

  38. W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Nano Lett. 4, 1085 (2004)

    Article  ADS  Google Scholar 

  39. L.M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, J. Stumpe, Langmuir 26, 2214 (2009)

    Article  Google Scholar 

  40. L. Nikolova, P.S. Ramanujam, Polarization Holography (Cambridge Academic Press, UK, 2009)

    Book  Google Scholar 

  41. N.K. Viswanathan, S. Balasubramanian, L. Li, S.K. Tripathy, J. Kumar, Jpn. J. Appl. Phys. 38, 5928 (1999)

    Article  ADS  Google Scholar 

  42. M. Saphiannikova, D. Neher, J Phys. Chem. B 109, 19428 (2005)

    Article  Google Scholar 

  43. V. Toshchevikov, M. Saphiannikova, G. Heinrich, J. Phys. Chem. B 113, 5032 (2009)

    Article  Google Scholar 

  44. F. Lagugne Labarthet, J.L. Bruneel, V. Rodriguez, C. Sourisseau, J. Phys. Chem. B 108, 1267 (2004)

    Article  Google Scholar 

  45. I. Naydenova, L. Nikolova, T. Todorov, N.C.R. Holme, P.S. Ramanujam, S. Hvilsted, J. Opt. Soc. Am. B 15, 1257 (1998)

    Article  ADS  Google Scholar 

  46. A. Sobolewska, A. Miniewicz, J. Phys. Chem. B 112, 4526 (2008)

    Article  Google Scholar 

  47. F. Lagugne Labarthet, T. Buffeteau, C. Sourisseau, J. Appl. Phys. 90, 3149 (2001)

    Article  ADS  Google Scholar 

  48. F. Lagugne Labarthet, J.L. Bruneel, T. Buffeteau, C. Sourisseau, J. Phys. Chem. B 108, 6949 (2004)

    Article  Google Scholar 

  49. H.J. Eichler, P. Günter, D.W. Pohl, Laser-induced Dynamic Gratings (Springer, Berlin, 1985), pp. 13–21

    Google Scholar 

Download references

Acknowledgements

The work is supported by the priority program SPP-1369 (DFG), grant GR 3725/2-2 (DFG) and Volkswagen Stiftung, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Santer.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOCX 111 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadavalli, N.S., Saphiannikova, M., Lomadze, N. et al. Structuring of photosensitive material below diffraction limit using far field irradiation. Appl. Phys. A 113, 263–272 (2013). https://doi.org/10.1007/s00339-013-7945-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7945-3

Keywords

Navigation