Skip to main content
Log in

THz generation from DFG in a noncollinear phase-matched GaP crystal pumped with a compact diode-pumped two-frequency LiYF4:Nd laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Pumping with a nanosecond two-frequency compact diode-pumped LiYF4:Nd laser emitting at 1047 and 1053 nm, a THz wave has been produced in a GaP crystal, attributed to the difference frequency generation process \(\frac{1}{{{\lambda _3}}} - \frac{1}{{{\lambda _2}}}=\frac{1}{{{\lambda _{{\text{TH}}z}}}}\). In a first set-up, the two pumping beams had a tunable angular separation provided by a sapphire prism. The phase matching angle of the noncollinear interaction has been determined to be 0.202° external angle and the refractive index 3.377 at 1.6 THz. The angular acceptance was rather broad, due to the fact that the thickness of the nonlinear crystal was only 3 mm. With a second set-up using a beam displacer constituted by YVO4 plates of different thicknesses, smaller angular separations were explored under other directions of polarizations of the pump beams. Because at the three wavelengths involved in this study the velocity of the nonlinear polarization wave inside GaP is higher than the THz wave phase velocity, a Cerenkov phase matching is possible. The plane-wave calculations show that the THz radiation under this process exits from the output face of the crystal, as it is experimentally observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Koch, Opt. Photon. News 18(3), 20 (2007)

    Article  ADS  Google Scholar 

  2. I. Duling, D. Zimdars, Laser Focus World 43, 63 (2007)

    Google Scholar 

  3. A. Borghesi, G. Guizzetti, in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic, New York, 1985), pp. 445–464

    Chapter  Google Scholar 

  4. F.L. Madarasz, J.O. Dimmock, N. Dietz, K.J. Bachmann, J. Appl. Phys. 87(3), 1564 (2000)

    Article  ADS  Google Scholar 

  5. Y.J. Ding, W. Shi, Sol. State Electron. 50, 1128 (2006)

    Article  ADS  Google Scholar 

  6. Y.J. Ding, P. Zhao, S. Ragam, D. Li, I.B. Zotova, Chin. Opt. Lett. 10, 110004 (2011)

    Article  Google Scholar 

  7. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, K. Saito, J. Appl. Phys. 93(9), 4610 (2003)

    Article  ADS  Google Scholar 

  8. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, T. Kimura, Appl. Phys. Lett. 83(2), 237 (2003)

    Article  ADS  Google Scholar 

  9. A. Brenier, Opt. Lett. 40(19), 4496 (2015)

    Article  ADS  Google Scholar 

  10. G. Alombert-Goget, A. Brenier, Y. Guyot, A. Labruyère, V. Couderc, B. Faure, Opt. Express 22, 10792 (2014)

    Article  ADS  Google Scholar 

  11. C.Y. Cho, T.L. Huang, S.M. Wen, Y.J. Huang, K.F. Huang, Y.F. Chen, Opt. Express 22, 25318 (2014)

    Article  ADS  Google Scholar 

  12. R. Czarny, M. Alouini, C. Larat, M. Krakowski, D. Dolfi, Electron. Lett. 40, 942 (2004)

    Article  Google Scholar 

  13. A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J.-F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, M. Alouini, Terahertz Sci Technol IEEE Trans 4, 260 (2014)

    Article  ADS  Google Scholar 

  14. A. Brenier, Las. Phys. Lett. 8, 520 (2011)

    Article  ADS  Google Scholar 

  15. A. Brenier, Y. Wu, P. Fu, J. Zhang, Y. Zu, Opt. Express 17, 18730 (2009)

    Article  ADS  Google Scholar 

  16. F. Pallas, E. Herault, J.-F. Roux, A. Kevorkian, J.-L. Coutaz, G. Vitrant, Opt. Lett. 37, 2817 (2012)

    Article  ADS  Google Scholar 

  17. Y.J. Huang, Y.S. Tzeng, C.Y. Tang, S.Y. Chiang, H.C. Liang, Y.F. Chen, Opt. Lett. 39, 1477 (2014)

    Article  ADS  Google Scholar 

  18. I.H. Malitson, M.J. Dodge, J. Opt. Soc. Am. 62, 1405 (1972)

    Google Scholar 

  19. G.A. Askar’yan, Sov. Phys.-JETP 15, 943 (1962)

    Google Scholar 

  20. U.A. Abdullin, G.A. Lyakthov, O.V. Rudenko, A.S. Chirkin, Sov. Phys.-JETP 39, 633 (1974)

    ADS  Google Scholar 

  21. D.A. Bagdasaryan, A.O. Makaryan, P.S. Pogosyan, JETP Lett. 37, 594 (1983)

    ADS  Google Scholar 

  22. J.A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, R. Beigang, Appl. Phys. B: Las. Opt. 86, 185 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Guillin, J.-F. Sivignon and P. Bonneteau for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brenier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenier, A. THz generation from DFG in a noncollinear phase-matched GaP crystal pumped with a compact diode-pumped two-frequency LiYF4:Nd laser. Appl. Phys. B 124, 194 (2018). https://doi.org/10.1007/s00340-018-7063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7063-1

Navigation