Skip to main content
Log in

Generation of sub-half-wavelength non-diffracting beams with tunable depth of focus by focusing azimuthally polarized beams

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We theoretically demonstrate a non-diffracting beam with a long depth of focus and a sub-half-wavelength spot size can be generated by tight focusing of a narrow annulus of azimuthally polarized beam with a phase mask and a high-numerical-aperture parabolic mirror. In this paper, numerical verifications are implemented in the calculation of the electromagnetic fields near the focus based on the vector diffraction theory. We present the expression of the approximate relationship between the angular thickness ∆θ and the depth of focus. We verify that the depth of focal line can be tunable by changing the value of ∆θ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.F. Wang, L.P. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2, 501–505 (2008)

    Article  Google Scholar 

  2. H.F. Wang, L.P. Shi, G.Q. Yuan, X.S. Miao, W.L. Tan, C.T. Chong, Subwavelength and super-resolution nondiffraction beam. Appl. Phys. Lett. 89, 171102 (2006)

    Article  ADS  Google Scholar 

  3. C.C. Sun, C.K. Liu, Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. Opt. Lett. 28, 99–101 (2003)

    Article  ADS  Google Scholar 

  4. M. Erdelyi, Z.L. Horvath, G. Szabo, Z. Bor, F.K. Tittel, J.R. Cavallaro, M.C. Smayling, Generation of diffraction-free beams for applications in opticalmicrolithography. J. Vac. Sci. Technol. B 15, 287–292 (1997)

    Article  Google Scholar 

  5. L.B. Liu, C. Liu, W.C. Howe, C.J.R. Sheppard, N.G. Chen, Binary-phase spatial filter for real-time swept-source optical coherence microscopy. Opt. Lett. 32, 2375–2377 (2007)

    Article  ADS  Google Scholar 

  6. R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy. Opt. Lett. 31, 2450–2452 (2006)

    Article  ADS  Google Scholar 

  7. Q.Q. Zhang, J.G. Wang, M.W. Wang, J. Bu, S.W. Zhu, R. Wang, B.Z. Gao, X.-C. Yuan, A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography. J. Opt. 13, 055301 (2011)

    Article  ADS  Google Scholar 

  8. A. Flores, M.R. Wang, J.J. Yang, Achromatic hybrid refractive-diffractive lens with extended depth of focus. Appl. Opt. 43, 5618–5630 (2004)

    Article  ADS  Google Scholar 

  9. J. Lin, K. Yin, Y.D. Li, J.B. Tan, Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation. Opt. Lett. 36, 1185–1187 (2011)

    Article  ADS  Google Scholar 

  10. X. Hao, C.F. Kuang, T.T. Wang, X. Liu, Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett. 35, 3928–3930 (2010)

    Article  ADS  Google Scholar 

  11. G.H. Yuan, S.B. Wei, X.C. Yuan, Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. J. Opt. Soc. Am. A 28, 1716–1720 (2011)

    Article  ADS  Google Scholar 

  12. P. Suresh, C. Mariyal, K.B. Rajesh, T.V.S. Pillai, Z. Jaroszewicz, Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask. Appl. Opt. 52, 849–853 (2013)

    Article  ADS  Google Scholar 

  13. C. Mohana Sundaram, K. Prabakaran, K.B. Rajesh, M. Udhayakumar, P.M. Anbarasan, A. Mohamed Musthafa, Tight focusing properties of phase modulated azimuthally polarized doughnut Gaussian beam. Opt. Quant. Electron. 48, 507 (2016)

    Article  Google Scholar 

  14. T. Grosjean, D. Courjon, C. Bainier, Smallest lithographic marks generated by optical focusing systems. Opt. Lett. 32, 976–978 (2007)

    Article  ADS  Google Scholar 

  15. M.A. Golub, V. Shurman, I. Grossinger, Extended focus diffractive optical element for Gaussian laser beams. Appl. Opt. 45, 144–150 (2006)

    Article  ADS  Google Scholar 

  16. N. Davidson, N. Bokor, High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt. Lett. 29, 1318–1320 (2004)

    Article  ADS  Google Scholar 

  17. J. Stadler, C. Stanciu, C. Stupperich, A.J. Meixner, Tighter focusing with a parabolic mirror. Opt. Lett. 33, 681–683 (2008)

    Article  ADS  Google Scholar 

  18. C. Debus, M.A. Lieb, A. Drechsler, A.J. Meixner, Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution. J. Microsc. 210, 203–208 (2003)

    Article  MathSciNet  Google Scholar 

  19. Harold Dehez, Alexandre April, Michel Piché, Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent. Opt. Express 20, 14891–14905 (2012)

    Article  ADS  Google Scholar 

  20. B. Richard, E. Wolf, Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplannatic system. Proc. R. Soc. A 253, 358–379 (1959)

    Article  ADS  Google Scholar 

  21. K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  22. M.V. Rybin, I.I. Shishkin, K.B. Samusev, P.A. Belov, Y.S. Kivshar, R.V. Kiyan, B.N. Chichkov, M.F. Limonov, Band structure of photonic crystals fabricated by two-photon polymerization. Crystals 5, 61–73 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peifeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Wang, Y. & Chen, P. Generation of sub-half-wavelength non-diffracting beams with tunable depth of focus by focusing azimuthally polarized beams. Appl. Phys. B 123, 214 (2017). https://doi.org/10.1007/s00340-017-6787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6787-7

Navigation