Skip to main content
Log in

Tight focusing properties of phase modulated azimuthally polarized doughnut Gaussian beam

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The intensity distribution in the focal region of a high NA lens for the incident azimuthally polarized doughnut Gaussian beam transmitted through a multi belt spiral phase hologram (MBSPH) is studied on the basis of the vector diffraction theory. Here we report a new method that generates a needle of transversely polarized light beam with sub diffraction beam size of 0.48λ that propagates without divergence over a long distance of about 49λ in free space and designed a dedicated MBSPH to generate multiple focal spot of transversely polarized. The authors also expect such a light needle of transversely polarized beam may find its application when using optical materials or instruments responsive to the transversal field only and to use in multiple optical trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cao, J., Chen, Q., Guo, H.: Creation of a controllable three dimensional optical chain by TEM11 Mode radially polarized Laguerre–Gaussian beam. Optik 124, 2033–2036 (2013)

    Article  ADS  Google Scholar 

  • Casaburi, A., Pesce, G., Zemánek, P.: Two- and three-beam interferometric optical tweezers. Opt. Commun. 251, 393–404 (2005)

    Article  ADS  Google Scholar 

  • Crocker, J.C., Grier, D.G.: Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett. 73(2), 352–355 (1994)

    Article  ADS  Google Scholar 

  • Dorn, R., Quabis, S., Leuchs, G.: Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91(23), 233901–233904 (2003)

    Article  ADS  Google Scholar 

  • Dufour, P., Piché, M., De Koninck, Y., McCarthy, N.: Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Appl. Opt. 45, 9246–9252 (2006)

    Article  ADS  Google Scholar 

  • Eriksen, R.L., Mogensen, P.C., Glückstad, J.: Multiple-beam optical tweezers generated by the generalized phase-contrast method. Opt. Lett. 27, 267–269 (2002)

    Article  ADS  Google Scholar 

  • Grosjean, T., Courjon, D., Bainier, C.: Smallest lithographic marks generated by optical focusing systems. Opt. Lett. 32, 976–978 (2007)

    Article  ADS  Google Scholar 

  • Guo, H., Dong, X., Weng, X., Sui, G., Yang, N., Zhuang, S.: Multifocus with small size, uniform intensity, and nearly circular symmetry. Opt. Lett. 36, 2200–2202 (2011)

    Article  ADS  Google Scholar 

  • Hao, B., Leger, J.: Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam. Opt. Express 15(6), 3550–3556 (2007)

    Article  ADS  Google Scholar 

  • Hao, X., Kuang, C.F., Wang, T.T., Liu, X.: Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett. 35, 3928–3930 (2010)

    Article  ADS  Google Scholar 

  • Huang, K., Shi, P., Cao, G.W., Li, K., Zhang, X.B., Li, Y.P.: Vector-vortex Bessel–Gauss beams and their tightly focusing properties. Opt. Lett. 36, 888–890 (2011)

    Article  ADS  Google Scholar 

  • Kozawa, Y., Sato, S.: Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett. 30, 3063–3065 (2005)

    Article  ADS  Google Scholar 

  • Kozawa, Y., Sato, S., et al.: Sharper focal spot formed by higher-order radially polarized laser beams. J. Opt. Soc. Am. A Opt. Image Sci. 24(6), 1793–1798 (2007)

    Article  ADS  Google Scholar 

  • Lalithambigai, K., Suresh, P., Ravi, V., Prabakaran, K., Jaroszewicz, Z., Rajesh, K.B., Anbarasan, P.M., Pillai, T.V.S.: Generation of sub wavelength super-long dark channel using high NA lens axicon. Opt. Lett. 37, 99–101 (2012)

    Article  Google Scholar 

  • Lalithambigai, K., Anbarasan, P.M., Rajesh, K.B.: Generation of needle of transversely polarized beam using complex spiral phase mask. Opt. Quantum Electron. 47, 1027–1033 (2015)

    Article  Google Scholar 

  • Lerman, G.M., Levy, U.: Effect of radial polarization and apodization on spot size under tight focusing conditions. Opt. Express 16, 4567–4581 (2008)

    Article  ADS  Google Scholar 

  • Li, J.L., Ueda, K., Musha, M., Zhong, L.X.: Generation of radially polarized mode in Yb fiber laser by using a dual conical prism. Opt. Lett. 31, 2969–2971 (2006)

    Article  ADS  Google Scholar 

  • Lin, J., Chen, R., Yu, H., Jin, P., Cada, M., Ma, Y.: Analysis of sub-wavelength focusing generated by radially polarized doughnut Gaussian beam. Opt. Laser Technol. 64, 242–246 (2014)

    Article  ADS  Google Scholar 

  • Machavariani, G., et al.: Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett. 32, 1468–1470 (2007)

    Article  ADS  Google Scholar 

  • Moh, K.J., et al.: Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Appl. Opt. 46, 7544–7551 (2007)

    Article  ADS  Google Scholar 

  • Nie, Z., Li, Z., Shi, G., Zhang, X., Wang, Y., Song, Y.: Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam. Opt. Lasers Eng. 59, 93–97 (2015)

    Article  Google Scholar 

  • Oron, R., et al.: The formation of laser beams with pure azimuthal or radial polarization. Appl. Phys. Lett. 77, 3322–3324 (2000)

    Article  ADS  Google Scholar 

  • Planchon, T.A., Gao, L., Milkie, D.E., Davidson, M.W., Galbraith, J.A., Galbraith, C.G., Betzig, E.: Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011)

    Article  Google Scholar 

  • Prabakaran, K., Rajesh, K.B., Pillai, T.V.S.: Generation of multiple sub wavelength focal spot segments using radially polarized Bessel Gaussian beam with complex phase filter. Optik 125, 3159–3161 (2014)

    Article  ADS  Google Scholar 

  • Quabis, S., Dorn, R., Eberler, M., Glöckl, O., Leuchs, G.: Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000)

    Article  ADS  Google Scholar 

  • Richards, B., Wolf, E.: Electromagnetic diffraction in optical systems II. Structure of the Image field in an aplanatic system. Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959)

    Article  ADS  MATH  Google Scholar 

  • Sundaram, C.M., Prabakaran, K., Anbarasan, P.M., Rajesh, K.B., Musthafa, A.M.: Creation of super long transversely polarized optical needle using azimuthally polarized multi-Gaussian beam Chin. Phys. Lett. 33, 064203–064207 (2016)

    Google Scholar 

  • Tadir, Y., Wright, W.H., Vafa, O., Ord, T., Asch, R.H., Berns, M.W.: Micromanipulation of sperm by a laser generated optical trap. Fertil. Steril. 52, 870–873 (1989)

    Article  Google Scholar 

  • Tam, J.M., Biran, I., Walt, D.R.: An imaging fiber-based optical tweezer array for microparticle array assembly. Appl. Phys. Lett. 84(21), 4289–4291 (2004)

    Article  ADS  Google Scholar 

  • Tian, B., Pu, J.: Tight focusing of a double-ring-shaped, azimuthally polarized beam. Opt. Lett. 36, 2014–2016 (2011)

    Article  ADS  Google Scholar 

  • Tidwell, S.C., Ford, D.H., Kimura, W.D.: Generating radially polarized beams interferometrically. Appl. Opt. 29, 2234–2239 (1990)

    Article  ADS  Google Scholar 

  • Unger, B.T., Marston, P.L.: Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator. J. Acoust. Soc. Am. 83, 970–975 (1988)

    Article  ADS  Google Scholar 

  • Wright, W.H., Sonek, G., Tadir, Y., Berns, M.W.: Laser trapping in cell biology. IEEE J. Quantum Electron. 26, 2148–2157 (1990)

    Article  ADS  Google Scholar 

  • Yan, S., Yao, B., Zhao, W., Lei, M.: Generation of multiple spherical spots with a radially polarized beam in a 4pi focusing system. J. Opt. Soc. Am. A 27, 2033–2037 (2010)

    Article  ADS  Google Scholar 

  • Yonezawa, K., Kozawa, Y., Sato, S.: Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Opt. Lett. 31, 2151–2153 (2006)

    Article  ADS  Google Scholar 

  • Youngworth, K., Brown, T.: Focusing of high numerical aperture cylindrical vector beams. Opt. Express 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  • Yuan, G., Wei, S., Yuan, X.: Non diffracting transversally polarized beam. Opt. Lett. 36, 3479–3481 (2011a)

    Article  ADS  Google Scholar 

  • Yuan, G., Wei, S., Yuan, X.: Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. J. Opt. Soc. Am. A 28, 1716–1720 (2011b)

    Article  ADS  Google Scholar 

  • Zhan, Q., Leger, J.: Focus shaping using cylindrical vector beams. Opt. Express 10, 324–331 (2002)

    Article  ADS  Google Scholar 

  • Zhao, Y., Zhan, Q., Zhang, Y., Li, Y.P.: Creation of a three-dimensional optical chain for controllable particle delivery. Opt. Lett. 30, 848–850 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Rajesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaram, C.M., Prabakaran, K., Rajesh, K.B. et al. Tight focusing properties of phase modulated azimuthally polarized doughnut Gaussian beam. Opt Quant Electron 48, 507 (2016). https://doi.org/10.1007/s11082-016-0765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0765-x

Keywords

Navigation