Skip to main content
Log in

Dual quantum cascade laser-based sensor for simultaneous NO and NO2 detection using a wavelength modulation-division multiplexing technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A sensor system capable of simultaneous measurements of NO and NO2 was developed using a wavelength modulation-division multiplexing (WMDM) scheme and multi-pass absorption spectroscopy. A continuous wave (CW), distributed-feedback (DFB) quantum cascade laser (QCL) and a CW external-cavity (EC) QCL were employed for targeting a NO absorption doublet at 1900.075 cm−1 and a NO2 absorption line at 1630.33 cm−1, respectively. Simultaneous detection was realized by modulating both QCLs independently at different frequencies and demodulating the detector signals with LabView-programmed lock-in amplifiers. The sensor operated at a reduced pressure of 40 Torr and a data sampling rate of 1 Hz. An Allan–Werle deviation analysis indicated that the minimum detection limits of NO and NO2 can reach sub-ppbv concentration levels with averaging times of 100 and 200 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.J. Crutzen, Annu. Rev. Earth Planet. Sci. 7, 443 (1979)

    Article  ADS  Google Scholar 

  2. J.A. Logan, J. Geophys. Res. 88, 10785 (1983)

    Article  ADS  Google Scholar 

  3. P.L. Kebabian, S.C. Herndon, A. Freedman, Anal. Chem. 77, 724 (2005)

    Article  Google Scholar 

  4. A. Karpf, G.N. Rao, Appl. Opt. 48, 408 (2009)

    Article  ADS  Google Scholar 

  5. P.V. Hobbs, Introduction to Atmospheric Chemistry (Cambridge University Press, New York, 2000), p. 160

    Book  Google Scholar 

  6. K. Liu, R. Lewicki, F.K. Tittel, Sens. Actuators B 237, 887 (2016)

    Article  Google Scholar 

  7. I.B. Pollack, B.M. Lerner, T.B. Ryerson, J. Atmos. Chem. 65, 111 (2010)

    Article  Google Scholar 

  8. B. Tuzson, K. Zeyer, M. Steinbacher, J. McManus, D. Nelson, M. Zahniser, L. Emmenegger, Atmos. Meas. Tech. 6, 927 (2013)

    Article  Google Scholar 

  9. C. Reed, M.J. Evans, P.D. Carlo, J.D. Lee, L.J. Carpenter, Atmos. Chem. Phys. 16, 4707 (2016)

    Article  ADS  Google Scholar 

  10. J.L. Jimenez, G.J. McRae, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol. 34, 2380 (2000)

    Article  ADS  Google Scholar 

  11. B.A. Mann, R.F. White, R.J. Morrison, Appl. Opt. 35, 475 (1996)

    Article  ADS  Google Scholar 

  12. X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 33, 725 (2011)

    Article  Google Scholar 

  13. X. Chao, J. Jeffries, R. Hanson, Appl. Phys. B 106, 987 (2012)

    Article  ADS  Google Scholar 

  14. G. Wysocki, A. Kosterev, F. Tittel, Appl. Phys. B 80, 617 (2005)

    Article  ADS  Google Scholar 

  15. D. Nelson, J. Shorter, J. McManus, M. Zahniser, Appl. Phys. B 75, 343 (2002)

    Article  ADS  Google Scholar 

  16. R. Curl, F. Tittel, Annu. Rep. Sect. C (Phys. Chem). 98, 219 (2002)

    Article  Google Scholar 

  17. Y.A. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)

    Article  ADS  Google Scholar 

  18. A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 40, 5522 (2001)

    Article  ADS  Google Scholar 

  19. I. Courtillot, J. Morville, V. Motto-Ros, D. Romanini, Appl. Phys. B 85, 407 (2006)

    Article  ADS  Google Scholar 

  20. M.I. Mazurenka, B.L. Fawcett, J.M. Elks, D.E. Shallcross, A.J. Orr-Ewing, Chem. Phys. Lett. 367, 1 (2003)

    Article  ADS  Google Scholar 

  21. R. Wada, A.J. Orr-Ewing, Analyst 130, 1595 (2005)

    Article  ADS  Google Scholar 

  22. H. Fuchs, W.P. Dubé, B.M. Lerner, N.L. Wagner, E.J. Williams, S.S. Brown, Environ. Sci. Technol. 43, 7831 (2009)

    Article  ADS  Google Scholar 

  23. J. Jágerská, P. Jouy, B. Tuzson, H. Looser, M. Mangold, P. Soltic, A. Hugi, R. Brönnimann, J. Faist, L. Emmenegger, Opt. Express 23, 1512 (2015)

    Article  ADS  Google Scholar 

  24. D.B. Oh, M.E. Paige, D.S. Bomse, Appl. Opt. 37, 2499 (1998)

    Article  ADS  Google Scholar 

  25. G. Wysocki, R.F. Curl, F.K. Tittel, R. Maulini, J.-M. Bulliard, J. Faist, Appl. Phys. B 81, 769 (2005)

    Article  ADS  Google Scholar 

  26. G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, Appl. Phys. B 92, 305 (2008)

    Article  ADS  Google Scholar 

  27. Y. Yu, N.P. Sanchez, R.J. Griffin, F.K. Tittel, Opt. Express 24, 10391 (2016)

    Article  ADS  Google Scholar 

  28. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    Article  ADS  Google Scholar 

  29. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)

    Article  ADS  Google Scholar 

  30. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, S. Friedfeld, Appl. Phys. B 72, 947 (2001)

    Article  ADS  Google Scholar 

  31. P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

  32. P. Werle, Appl. Phys. B 102, 313 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y. Yu acknowledges support by China Scholarship Council (CSC) (Grant No. 201406270063). The Rice University group acknowledges support by the National Science Foundation (NSF) ERC MIRTHE award. F. K. Tittel acknowledges support by the Robert Welch Foundation (Grant C-0586), Advanced Research Projects Agency-Energy (Grant Nos. DE-0000545, DE-0000547). W. Ye acknowledges support by National Science Foundation of China (NSFC) (61307124), High School Outstanding Young Teacher Training Program of Guangdong Province (YQ2015071) and CSC (Grant No. 201508440112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Sanchez, N.P., Yi, F. et al. Dual quantum cascade laser-based sensor for simultaneous NO and NO2 detection using a wavelength modulation-division multiplexing technique. Appl. Phys. B 123, 164 (2017). https://doi.org/10.1007/s00340-017-6742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6742-7

Keywords

Navigation