Skip to main content
Log in

Investigation of in-flame soot optical properties in laminar coflow diffusion flames using thermophoretic particle sampling and spectral light extinction

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Soot optical properties are essential to the noninvasive study of the in-flame evolution of soot particles since they allow quantitative interpretation of optical diagnostics. Such experimental data are critical for comparison to results from computational models and soot sub-models. In this study, the thermophoretic sampling particle diagnostic (TSPD) technique is applied along with data from a previous spectrally resolved line-of-sight light attenuation experiment to determine the soot volume fraction and absorption function. The TSPD technique is applied in a flame stabilized on the Yale burner, and the soot scattering-to-absorption ratio is calculated using the Rayleigh–Debye–Gans theory for fractal aggregates and morphology information from a previous sampling experiment. The soot absorption function is determined as a function of wavelength and found to be in excellent agreement with previous in-flame measurements of the soot absorption function in coflow laminar diffusion flames. Two-dimensional maps of the soot dispersion exponent are calculated and show that the soot absorption function may have a positive or negative exponential wavelength dependence depending on the in-flame location. Finally, the wavelength dependence of the soot absorption function is related to the ratio of soot absorption functions, as would be found using two-excitation-wavelength laser-induced incandescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.C. Bond, R.W. Bergstrom, Aerosol Sci. Tech. 40, 1 (2006)

    Article  Google Scholar 

  2. M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket, R.J. Hall, Combust. Flame 143, 4 (2005)

    Article  Google Scholar 

  3. T. Blacha, M. Di Domenico, P. Gerlinger, M. Aigner, Combust. Flame 159, 1 (2012)

    Article  Google Scholar 

  4. S.B. Dworkin, J.A. Cooke, B.A.V. Bennett, B.C. Connelly, M.B. Long, M.D. Smooke, R.J. Hall, M.B. Colket, Combust. Theor. Model. 13, 5 (2009)

    Article  Google Scholar 

  5. N.A. Eaves, A. Veshkini, C. Riese, Q.A. Zhang, S.B. Dworkin, M.J. Thomson, Combust. Flame 159, 10 (2012)

    Article  Google Scholar 

  6. K.A. Thomson, M.R. Johnson, D.R. Snelling, G.J. Smallwood, Appl. Optics 47, 5 (2008)

    Article  Google Scholar 

  7. D.R. Snelling, K.A. Thomson, G.J. Smallwood, O.L. Gulder, Appl. Optics 38, 12 (1999)

    Article  Google Scholar 

  8. P.S. Greenberg, J.C. Ku, Appl. Optics 36, 22 (1997)

    Article  Google Scholar 

  9. http://guilford.eng.yale.edu/yalecoflowflames/index.html (06/01/2016)

  10. B. Ma, M.B. Long, Appl. Phys. B 117, 1 (2014)

    Article  Google Scholar 

  11. N.J. Kempema, M.B. Long, Combust. Flame 164, 373 (2016)

    Article  Google Scholar 

  12. P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, M. B. Long, in Proceedings of the Combustion Institute 33, (2011)

  13. http://www.adelaide.edu.au/cet/isfworkshop/ (06/01/2016)

  14. J. Widmann, J.C. Yang, T.J. Smith, S.L. Manzello, G.W. Mulholland, Combust. Flame 134, 1–2 (2003)

    Article  Google Scholar 

  15. J.F. Widmann, J. Duchez, J.C. Yang, J.M. Conny, G.W. Mulholland, J. Aerosol Sci. 36, 2 (2005)

    Article  Google Scholar 

  16. Z.Q. Zhou, T.U. Ahmed, M.Y. Choi, Exp. Therm. Fluid Sci. 18, 1 (1998)

    Article  Google Scholar 

  17. J.Y. Zhu, A. Irrera, M.Y. Choi, G.W. Mulholland, J. Suo-Anttila, L.A. Gritzo, Int. J. Heat Mass Tran. 47, 17–18 (2004)

    Google Scholar 

  18. M.Y. Choi, G.W. Mulholland, A. Hamins, T. Kashiwagi, Combust. Flame 102, 1–2 (1995)

    Article  Google Scholar 

  19. T.C. Williams, C.R. Shaddix, K.A. Jensen, J.M. Suo-Anttila, Int. J. Heat Mass Tran. 50, 7–8 (2007)

    Article  Google Scholar 

  20. A.R. Coderre, K.A. Thomson, D.R. Snelling, M.R. Johnson, Appl. Phys. B 104, 1 (2011)

    Article  Google Scholar 

  21. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transf. 123, 2 (2001)

    Article  Google Scholar 

  22. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transf. 122, 3 (2000)

    Article  Google Scholar 

  23. C.M. Sorensen, Aerosol Sci. Technol. 35, 2 (2001)

    Article  Google Scholar 

  24. S. De Luliis, F. Cignoli, G. Zizak, Appl. Optics 44, 34 (2005)

    Google Scholar 

  25. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 4 (2009)

    Article  Google Scholar 

  26. D.R. Snelling, F.S. Liu, G.J. Smallwood, O.L. Gulder, Combust. Flame 136, 1–2 (2004)

    Article  Google Scholar 

  27. V. Beyer, D.A. Greenhalgh, Appl. Phys. B 83, 3 (2006)

    Google Scholar 

  28. E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 2–3 (2007)

    Article  Google Scholar 

  29. S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Appl. Phys. B 116, 2 (2014)

    Article  Google Scholar 

  30. F. Migliorini, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 2 (2011)

    Article  Google Scholar 

  31. U.O. Koylu, C.S. McEnally, D.E. Rosner, L.D. Pfefferle, Combust. Flame 110, 4 (1997)

    Article  Google Scholar 

  32. A.D. Eisner, D.E. Rosner, Combust. Flame 61, 2 (1985)

    Article  Google Scholar 

  33. U.O. Koylu, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 4 (1995)

    Article  Google Scholar 

  34. K. Tian, K.A. Thomson, F.S. Liu, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 144, 4 (2006)

    Article  Google Scholar 

  35. K. Tian, F. S. Liu, M. Yang, K. A. Thomson, D. R. Snelling, G. J. Smallwood, in Proceedings of the Combustion Institute 31, (2007)

  36. R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 2 (1983)

    Article  Google Scholar 

  37. X. Lopez-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol. Sci. 75, 43 (2014)

    Article  Google Scholar 

  38. E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 118, 2 (2015)

    Article  Google Scholar 

  39. L. Figura. Experimental study of incipiently-sooting counterflow flames at high pressures, Ph.D. Thesis, Yale University, 2014

  40. R.A. Dobbins, C.M. Megaridis, Langmuir 3, 2 (1987)

    Article  Google Scholar 

  41. B. C. Connelly. Quantitative Characterization of Steady and Time-Varying, Sooting, Laminar Diffusion Flames using Optical Techniques, Ph.D. Thesis, Yale University, 2009

  42. U.O. Koylu, G.M. Faeth, Combust. Flame 89, 2 (1992)

    Article  Google Scholar 

  43. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 3 (2006)

    Google Scholar 

  44. D.R. Snelling, R.A. Sawchuk, G.J. Smallwood, K. Thomson, Appl. Phys. B 119, 4 (2015)

    Article  Google Scholar 

  45. J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Appl. Phys. B 104, 2 (2011)

    Article  Google Scholar 

  46. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 8 (2010)

    Article  Google Scholar 

  47. K.J. Daun, K.A. Thomson, F.S. Liu, G.J. Smallwood, Appl. Optics 45, 19 (2006)

    Article  Google Scholar 

  48. K.J. Daun, J. Quant. Spectrosc. Ra. 111, 1 (2010)

    Article  Google Scholar 

  49. M. Leschowski, K.A. Thomson, D.R. Snelling, C. Schulz, G.J. Smallwood, Appl. Phys. B 119, 4 (2015)

    Article  Google Scholar 

  50. H. A. Michelsen, C. Schulz, G. J. Smallwood, S. Will, Prog. Energ. Combust. 51, 2–48 (2015)

  51. G. Cleon, T. Amodeo, A. Faccinetto, P. Desgroux, Appl. Phys. B 104, 2 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CBET-1403224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. Kempema.

Appendix 1: Uncertainty analysis

Appendix 1: Uncertainty analysis

To assess the uncertainty of the TSPD/spec-LOSA-derived soot volume fraction and absorption functions, an uncertainty analysis was conducted. The uncertainty in f v was determined by propagating uncertainty from the independent parameters in Eq. (3) as shown in Eq. (13). The uncertainty in V p , σ, Nu x , T w , and T g was taken to be 6, 4, 10, 10, and 3 %, respectively. Since the probe wall temperature is a function of grid exposure, we include a 10 % uncertainty estimate to span the range of possible temperatures with the 385 K measured in Ref. [40] serving as an approximate upper limit due to their longer grid exposure.

$$\delta f_{v} = \sqrt {\left( {V_{p} \frac{{\partial f_{v} }}{{\partial V_{p} }}\frac{{\delta V_{p} }}{{V_{p} }}} \right)^{2} + \left( {\sigma \frac{{\partial f_{v} }}{\partial \sigma }\frac{\delta \sigma }{\sigma }} \right)^{2} + \left( {Nu_{x} \frac{{\partial f_{v} }}{{\partial Nu_{x} }}\frac{{\delta Nu_{x} }}{{Nu_{x} }}} \right)^{2} + \left( {T_{w} \frac{{\partial f_{v} }}{{\partial T_{w} }}\frac{{\delta T_{w} }}{{T_{w} }}} \right)^{2} + \left( {T_{g} \frac{{\partial f_{v} }}{{\partial T_{g} }}\frac{{\delta T_{g} }}{{T_{g} }}} \right)^{2} }$$
(13)

Uncertainty in the TSPD-derived f v was determined from Eq. (13) and used in Eq. (14) to determine uncertainty in the measured soot absorption function. Equation (14) is arrived at after rearranging Eq. (10) and considering uncertainty in τ, ρ SA(λ), and f v to be 1, 10 %, and the result of Eq. (13), respectively.

$$\delta E\left( m \right) = \sqrt {\left( {\tau \frac{\partial E\left( m \right)}{\partial \tau }\frac{\delta \tau }{\tau }} \right)^{2} + \left( {\rho_{SA} \left( \lambda \right)\frac{\partial E\left( m \right)}{{\partial \rho_{SA} \left( \lambda \right)}}\frac{{\delta \rho_{SA} \left( \lambda \right)}}{{\rho_{SA} \left( \lambda \right)}}} \right)^{2} + \left( {f_{v} \frac{\partial E\left( m \right)}{{\partial f_{v} }}\frac{{\delta f_{v} }}{{f_{v} }}} \right)^{2} }$$
(14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kempema, N.J., Ma, B. & Long, M.B. Investigation of in-flame soot optical properties in laminar coflow diffusion flames using thermophoretic particle sampling and spectral light extinction. Appl. Phys. B 122, 232 (2016). https://doi.org/10.1007/s00340-016-6509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6509-6

Keywords

Navigation