Skip to main content
Log in

Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the investigation of an advanced circular plasmonic nanoantenna under ultrafast excitation using nonlinear photoemission electron microscopy (PEEM) under near-normal incidence. The circular nanoantenna is enhanced in its performance by a supporting grating and milled out from a gold film. The considered antenna shows a sophisticated physical resonance behaviour that is ideal to demonstrate the possibilities of PEEM for the experimental investigations of plasmonic effects on the nanoscale. Field profiles of the antenna resonance for both possible linear polarizations of the incident field are measured with high spatial resolution. In addition, outward-propagating Hankel plasmons, which are also excited by the structure, are measured and analysed. We compare our findings to measurements of an isolated plasmonic nanodisc resonator and scanning near-field optical microscopy measurements of both structures. All results are in very good agreement with numerical simulations as well as analytical models that are also discussed in our paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Bharadwaj, B. Deutsch, L. Novotny, Adv. Opt. Photonics 1, 438 (2009)

    Article  Google Scholar 

  2. L. Novotny, N. van Hulst, Nat. Photonics 5, 83 (2011)

    Article  ADS  Google Scholar 

  3. P. Biagioni, J.-S. Huang, B. Hecht, Rep. Prog. Phys. 75, 024402 (2012)

    Article  ADS  Google Scholar 

  4. A.E. Krasnok et al., Physics-Uspekhi 56, 539 (2013)

    Article  ADS  Google Scholar 

  5. J. Dorfmuller et al., Nano Lett. 10, 3596 (2010)

    Article  ADS  Google Scholar 

  6. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)

    Article  ADS  Google Scholar 

  7. J. Qi et al., Opt. Express 23, 14583 (2015)

    Article  ADS  Google Scholar 

  8. M.I. Stockman, M.F. Kling, U. Kleineberg, F. Krausz, Nat. Photonics 1, 539 (2007)

    Article  ADS  Google Scholar 

  9. M. Aeschlimann et al., Nature 446, 301 (2007)

    Article  ADS  Google Scholar 

  10. N. Rotenberg, L. Kuipers, Nat. Photonics 8, 919 (2014)

    Article  ADS  Google Scholar 

  11. M. Wulf, A. de Hoogh, N. Rotenberg, L. Kuipers, ACS Photonics 1, 1173 (2014)

    Article  Google Scholar 

  12. L. Douillard, F. Charra, J. Electron Spectrosc. Relat. Phenom. 189, 24 (2013)

    Article  Google Scholar 

  13. G.H. Fecher, O. Schmidt, Y. Hwu, G. Schönhense, J. Electron Spectrosc. Relat. Phenom. 126, 77 (2002)

    Article  Google Scholar 

  14. O. Schmidt et al., Appl. Phys. B 74, 223 (2002)

    Article  ADS  Google Scholar 

  15. M. Cinchetti et al., Phys. Rev. Lett. 95, 047601 (2005)

    Article  ADS  Google Scholar 

  16. F.-J. Meyer zu Heringdorf, L.I. Chelaru, S. Möllenbeck, D. Thien, M. Horn-von Hoegen, Surf. Sci. 601, 4700 (2007)

    Article  ADS  Google Scholar 

  17. A. Kubo, N. Pontius, H. Petek, Nano Lett. 7, 470 (2007)

    Article  ADS  Google Scholar 

  18. L.I. Chelaru, F.-J. Meyer zu Heringdorf, Surf. Sci. 601, 4541 (2007)

    Article  ADS  Google Scholar 

  19. S.H. Chew et al., Appl. Phys. Lett. 100, 051904 (2012)

    Article  ADS  Google Scholar 

  20. Y. Gong, A.G. Joly, D. Hu, P.Z. El-Khoury, W.P. Hess, Nano Lett. 15, 3472 (2015)

    Article  ADS  Google Scholar 

  21. L. Zhang, A. Kubo, L. Wang, H. Petek, T. Seideman, Phys. Rev. B 84, 245442 (2011)

    Article  ADS  Google Scholar 

  22. N. Buckanie, P. Kirschbaum, S. Sindermann, F.-J. Meyer zu Heringdorf, Ultramicroscopy 130, 49 (2013)

    Article  Google Scholar 

  23. C. Lemke et al., Opt. Express 21, 27392 (2013)

    Article  ADS  Google Scholar 

  24. C. Lemke et al., Appl. Phys. B 116, 585 (2014)

    Article  ADS  Google Scholar 

  25. C. Lemke et al., Nano Lett. 14, 2431 (2014)

    Article  ADS  Google Scholar 

  26. Y. Gong, A.G. Joly, P.Z. El-Khoury, W.P. Hess, J. Phys. Chem. C 118, 25671 (2014)

    Article  Google Scholar 

  27. P. Kahl et al., Plasmonics 9, 1401 (2014)

    Article  Google Scholar 

  28. P. Melchior et al., Phys. Rev. B 83, 235407 (2011)

    Article  ADS  Google Scholar 

  29. C. Lemke et al., Nano Lett. 13, 1053 (2013)

    Article  ADS  Google Scholar 

  30. F. Schertz et al., Nano Lett. 12, 1885 (2012)

    Article  ADS  Google Scholar 

  31. P. Klaer et al., Appl. Phys. Lett. 106, 261101 (2015)

    Article  ADS  Google Scholar 

  32. S. Nerkararyan, K. Nerkararyan, N. Janunts, T. Pertsch, Phys. Rev. B 82, 245405 (2010)

    Article  ADS  Google Scholar 

  33. R. Filter, J. Qi, C. Rockstuhl, F. Lederer, Phys. Rev. B 85, 125429 (2012)

    Article  ADS  Google Scholar 

  34. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  35. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, Mineola, 1964)

    MATH  Google Scholar 

  36. S.B. Hasan et al., Phys. Rev. B 84, 195405 (2011)

    Article  ADS  Google Scholar 

  37. T. Kaiser, S.B. Hasan, T. Paul, T. Pertsch, C. Rockstuhl, Phys. Rev. B 88, 035117 (2013)

    Article  ADS  Google Scholar 

  38. J. Qi et al., J. Opt. Soc. Am. A 31, 388 (2014)

    Article  ADS  Google Scholar 

  39. A.F. Oskooi et al., Comput. Phys. Commun. 181, 687 (2010)

    Article  ADS  Google Scholar 

  40. Boyd, Nonlinear Optics, 3rd edn. (Elsevier/Academic Press, Amsterdam, 2008)

    Google Scholar 

  41. M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon Press, Oxford, 1991)

    Google Scholar 

  42. A.E. Klein, N. Janunts, M. Steinert, A. Tünnermann, T. Pertsch, Nano Lett. 14, 5010 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We thank N. Asger Mortensen (DTU Denmark) for stimulating discussions and Focus GmbH (Germany) for the sketch of the PEEM in Fig. 2. Funding is acknowledged by Deutsche Forschungsgemeinschaft (DFG SPP 1391 Ultrafast Nanooptics), the Thuringian Ministry for Economy, Science and Digital Society (TMWWDG Pro-Exzellenz program), and the Carl Zeiss foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kaiser.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, T., Falkner, M., Qi, J. et al. Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy. Appl. Phys. B 122, 53 (2016). https://doi.org/10.1007/s00340-015-6312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6312-9

Keywords

Navigation