Applied Physics B

, 122:53 | Cite as

Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy

  • Thomas Kaiser
  • Matthias Falkner
  • Jing Qi
  • Angela Klein
  • Michael Steinert
  • Christoph Menzel
  • Carsten Rockstuhl
  • Thomas Pertsch
Article
Part of the following topical collections:
  1. Ultrafast Nanooptics

Abstract

We report on the investigation of an advanced circular plasmonic nanoantenna under ultrafast excitation using nonlinear photoemission electron microscopy (PEEM) under near-normal incidence. The circular nanoantenna is enhanced in its performance by a supporting grating and milled out from a gold film. The considered antenna shows a sophisticated physical resonance behaviour that is ideal to demonstrate the possibilities of PEEM for the experimental investigations of plasmonic effects on the nanoscale. Field profiles of the antenna resonance for both possible linear polarizations of the incident field are measured with high spatial resolution. In addition, outward-propagating Hankel plasmons, which are also excited by the structure, are measured and analysed. We compare our findings to measurements of an isolated plasmonic nanodisc resonator and scanning near-field optical microscopy measurements of both structures. All results are in very good agreement with numerical simulations as well as analytical models that are also discussed in our paper.

References

  1. 1.
    P. Bharadwaj, B. Deutsch, L. Novotny, Adv. Opt. Photonics 1, 438 (2009)CrossRefGoogle Scholar
  2. 2.
    L. Novotny, N. van Hulst, Nat. Photonics 5, 83 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    P. Biagioni, J.-S. Huang, B. Hecht, Rep. Prog. Phys. 75, 024402 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A.E. Krasnok et al., Physics-Uspekhi 56, 539 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    J. Dorfmuller et al., Nano Lett. 10, 3596 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J. Qi et al., Opt. Express 23, 14583 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    M.I. Stockman, M.F. Kling, U. Kleineberg, F. Krausz, Nat. Photonics 1, 539 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    M. Aeschlimann et al., Nature 446, 301 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    N. Rotenberg, L. Kuipers, Nat. Photonics 8, 919 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    M. Wulf, A. de Hoogh, N. Rotenberg, L. Kuipers, ACS Photonics 1, 1173 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Douillard, F. Charra, J. Electron Spectrosc. Relat. Phenom. 189, 24 (2013)CrossRefGoogle Scholar
  13. 13.
    G.H. Fecher, O. Schmidt, Y. Hwu, G. Schönhense, J. Electron Spectrosc. Relat. Phenom. 126, 77 (2002)CrossRefGoogle Scholar
  14. 14.
    O. Schmidt et al., Appl. Phys. B 74, 223 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    M. Cinchetti et al., Phys. Rev. Lett. 95, 047601 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    F.-J. Meyer zu Heringdorf, L.I. Chelaru, S. Möllenbeck, D. Thien, M. Horn-von Hoegen, Surf. Sci. 601, 4700 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A. Kubo, N. Pontius, H. Petek, Nano Lett. 7, 470 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    L.I. Chelaru, F.-J. Meyer zu Heringdorf, Surf. Sci. 601, 4541 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Chew et al., Appl. Phys. Lett. 100, 051904 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Gong, A.G. Joly, D. Hu, P.Z. El-Khoury, W.P. Hess, Nano Lett. 15, 3472 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    L. Zhang, A. Kubo, L. Wang, H. Petek, T. Seideman, Phys. Rev. B 84, 245442 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    N. Buckanie, P. Kirschbaum, S. Sindermann, F.-J. Meyer zu Heringdorf, Ultramicroscopy 130, 49 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Lemke et al., Opt. Express 21, 27392 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    C. Lemke et al., Appl. Phys. B 116, 585 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    C. Lemke et al., Nano Lett. 14, 2431 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Gong, A.G. Joly, P.Z. El-Khoury, W.P. Hess, J. Phys. Chem. C 118, 25671 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Kahl et al., Plasmonics 9, 1401 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Melchior et al., Phys. Rev. B 83, 235407 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    C. Lemke et al., Nano Lett. 13, 1053 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    F. Schertz et al., Nano Lett. 12, 1885 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    P. Klaer et al., Appl. Phys. Lett. 106, 261101 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    S. Nerkararyan, K. Nerkararyan, N. Janunts, T. Pertsch, Phys. Rev. B 82, 245405 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    R. Filter, J. Qi, C. Rockstuhl, F. Lederer, Phys. Rev. B 85, 125429 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
  35. 35.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, Mineola, 1964)MATHGoogle Scholar
  36. 36.
    S.B. Hasan et al., Phys. Rev. B 84, 195405 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    T. Kaiser, S.B. Hasan, T. Paul, T. Pertsch, C. Rockstuhl, Phys. Rev. B 88, 035117 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    J. Qi et al., J. Opt. Soc. Am. A 31, 388 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    A.F. Oskooi et al., Comput. Phys. Commun. 181, 687 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Boyd, Nonlinear Optics, 3rd edn. (Elsevier/Academic Press, Amsterdam, 2008)Google Scholar
  41. 41.
    M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon Press, Oxford, 1991)Google Scholar
  42. 42.
    A.E. Klein, N. Janunts, M. Steinert, A. Tünnermann, T. Pertsch, Nano Lett. 14, 5010 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thomas Kaiser
    • 1
  • Matthias Falkner
    • 1
  • Jing Qi
    • 2
  • Angela Klein
    • 1
  • Michael Steinert
    • 1
  • Christoph Menzel
    • 1
  • Carsten Rockstuhl
    • 3
  • Thomas Pertsch
    • 1
  1. 1.Abbe Center of Photonics, Institute of Applied PhysicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Abbe Center of Photonics, Institute of Condensed Matter Theory and Solid State OpticsFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Institute of Theoretical Solid State Physics and Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations