J.S. Lighty, J.M. Veranth, A.F. Sarofim, Combustion aerosols: factors governing their size and composition and implications to human health. J. Air Waste Manag. Assoc. 50(9), 1565–1618 (2000)
Article
Google Scholar
G. Yang, T. Steven, P. Kent, I.M. Kennedy, Synthesis of an ultrafine iron and soot aerosol for the evaluation of particle toxicity. Aerosol Sci. Technol. 35(3), 759–766 (2001)
Article
Google Scholar
R.F. Service, Study fingers soot as a major player in global warming. Science 319, 1745 (2008)
Article
Google Scholar
H. Wang, Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33(1), 41–67 (2011)
Article
Google Scholar
A.C. Eckbreth, Effects of laser-modulated particulate incandescence on Raman scattering diagnostics. J. Appl. Phys. 48(11), 4473–4479 (1977)
ADS
Article
Google Scholar
L.A. Melton, Soot diagnostic based on laser heating. Appl. Opt. 23(13), 2201–2208 (1984)
ADS
Article
Google Scholar
C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Laser-induced incandescence: recent trends and current questions. Appl. Phys. B 83(3), 333–354 (2006)
ADS
Article
Google Scholar
D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl. Opt. 44(31), 6773–6785 (2005)
ADS
Article
Google Scholar
C.R. Shaddix, K.C. Smyth, Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust. Flame 107(4), 418–452 (1996)
Article
Google Scholar
C.R. Shaddix, J.E. Harrington, K.C. Smyth, Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combust. Flame 99(3–4), 723–732 (1994)
Article
Google Scholar
A.E. Karata, Ö.L. Gülder, Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci. 38(6), 818–845 (2012)
Article
Google Scholar
J.V. Pastor, J.M. García, J.M. Pastor, J.E. Buitrago, Analysis of calibration techniques for laser-induced incandescence measurements in flames. Meas. Sci. Technol. 17(12), 3279–3288 (2006)
ADS
Article
Google Scholar
A. Fuentes, G. Legros, H. El-Rabii, J.P. Vantelon, P. Joulain, J.L. Torero, Laser-induced incandescence calibration in a three-dimensional laminar diffusion flame. Exp. Fluids 43(6), 939–948 (2007)
Article
Google Scholar
P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen, J.F. Pauwels, Soot volume fraction measurement in low-pressure methane flames by combining laser-induced incandescence and cavity ring-down spectroscopy: effect of pressure on soot formation. Combust. Flame 155(1–2), 289–301 (2008)
Article
Google Scholar
B. Axelsson, R. Collin, P.E. Bengtsson, Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration. Appl. Phys. B 72(3), 367–372 (2001)
ADS
Article
Google Scholar
J. Zerbs, K.P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames. Appl. Phys. B 96(4), 683–694 (2009)
ADS
Article
Google Scholar
N.H. Qamar, Z.T. Alwahabi, Q.N. Chan, G.J. Nathan, D. Roekaerts, K.D. King, Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combust. Flame 156(7), 1339–1347 (2009)
Article
Google Scholar
M. Köhler, K.P. Geigle, W. Meier, B.M. Crosland, K.A. Thomson, G.J. Smallwood, Sooting turbulent jet flame: characterization and quantitative soot measurements. Appl. Phys. B 104(2), 409–425 (2011)
ADS
Article
Google Scholar
Y. Xin, J.P. Gore, Two-dimensional soot distributions in buoyant turbulent fires. Proc. Combust. Inst. 30(1), 719–726 (2005)
Article
Google Scholar
K. Frederickson, S.P. Kearney, T.W. Grasser, Laser-induced incandescence measurements of soot in turbulent pool fires. Appl. Opt. 50(4), A49–59 (2011)
ADS
Article
Google Scholar
D. Tree, J. Dec, Extinction measurements of in-cylinder soot deposition in a heavy-duty DI diesel engine. SAE Technical Paper, 2001-01-1296, 2001
K. Song, Y. Lee, T. Litzinger. Effects of emulsified fuels on soot evolution in an optically-accessible DI diesel engine. SAE Technical Paper, 2000–01-2794, 2000
M.P.B. Musculus, L.M. Pickett, Diagnostic considerations for optical laser-extinction measurements of soot in high-pressure transient combustion environments. Combust. Flame 141(4), 371–391 (2005)
Article
Google Scholar
R. Di Sante, Laser extinction technique for measurements of carbon particles concentration during combustion. Opt. Lasers Eng. 51(6), 783–789 (2013)
Article
Google Scholar
K.A. Thomson, M.R. Johnson, Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements. Appl. Opt. 5(47), 694–703 (2008)
ADS
Article
Google Scholar
T.C. Williams, C.R. Shaddix, K.A. Jensen, J.M. Suo-Anttila, Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames. Int. J. Heat Mass Transf. 50(7–8), 1616–1630 (2007)
Article
Google Scholar
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefaski, S. So, D. Thomazy, F.K. Tittel, CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl. Phys. B 112(4), 461–465 (2013)
ADS
Article
Google Scholar
A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, L. Emmenegger, Versatile multipass cell for laser spectroscopic trace gas analysis. Appl. Phys. B 109(3), 461–466 (2012)
ADS
Article
Google Scholar
D. Mazzotti, G. Giusfredi, High-sensitivity spectroscopy of CO2 around 4.25 μm with difference-frequency radiation. Opt. Lasers Eng. 37, 143–158 (2002)
Article
Google Scholar
C.G. Tarsitano, C.R. Webster, Multilaser Herriott cell for planetary tunable laser spectrometers. Appl. Opt. 46(28), 6923–6935 (2007)
ADS
Article
Google Scholar
Y. Bouvier, C. Mihesan, M. Ziskind, E. Therssen, C. Focsa, J.F. Pauwels, P. Desgroux, Molecular species adsorbed on soot particles issued from low sooting methane and acetylene laminar flames: a laser-based experiment. Proc. Combust. Inst. 31(1), 841–849 (2007)
Article
Google Scholar
C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames. Appl. Phys. B 78(3–4), 485–492 (2004)
ADS
Article
Google Scholar
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064 nm by laser induced incandescence. Appl. Phys. B 89(2–3), 417–427 (2007)
ADS
Article
Google Scholar
R.L. Vander Wal, Calibration and comparison of laser-induced incandescence with cavity ring-down. Int. Symp. Combust. 27(1), 59–67 (1998)
Article
Google Scholar
R.L. Vander Wal, T.M. Ticich, Cavity ringdown and laser-induced incandescence measurements of soot. Appl. Opt. 38(9), 1444–1451 (1999)
ADS
Article
Google Scholar
R. Engeln, G. Berden, R. Peeters, G. Meijer, Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy. Rev. Sci. Instrum. 69(11), 3763 (1998)
ADS
Article
Google Scholar
W. Cai, C.F. Kaminski, Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy. Appl. Phys. Lett. 104(15), 154106 (2014)
ADS
Article
Google Scholar
L. Ma, J. Ye, P. Dubé, J.L. Hall, Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD. J. Opt. Soc. Am. B 16(12), 2255–2268 (1999)
ADS
Article
Google Scholar
S. Gersen, A.V. Mokhov, H.B. Levinsky, Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames. Combust. Flame 143(3), 333–336 (2005)
Article
Google Scholar
T. Cai, G. Wang, Z. Cao, W. Zhang, X. Gao, Sensor for headspace pressure and H2O concentration measurements in closed vials by tunable diode laser absorption spectroscopy. Opt. Lasers Eng. 58, 48–53 (2014)
Article
Google Scholar
S. Basu, D.E. Lambe, R. Kumar, Water vapor and carbon dioxide species measurements in narrow channels. Int. J. Heat Mass Transf. 53(4), 703–714 (2010)
Article
Google Scholar
R.R. Skaggs, J.H. Miller, Tunable diode laser absorption measurements of carbon monoxide and temperature in a time-varying, methane/air, non-premixed flame. Symposium (international) on combustion, pp. 1181–1188, 1996
T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefière, J.L. Bertaux, TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere. Adv. Space Res. 38(4), 718–725 (2006)
ADS
Article
Google Scholar
G. Durry, L. Joly, T. Le Barbu, B. Parvitte, V. Zéninari, Laser diode spectroscopy of the H2O isotopologues in the 2.64 μm region for the in situ monitoring of the Martian atmosphere. Infrared Physics & Technology 51(3), 229–235 (2008)
ADS
Article
Google Scholar
S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames. Proc. Combust. Inst. 32(1), 839–846 (2009)
Article
Google Scholar
J. Ropcke, L. Mechold, M. Kaning, W.Y. Fan, P.B. Davies, Tunable diode laser diagnostic studies of H2 –Ar–O2 microwave plasmas containing methane or methanol. Plasma Chem. Plasma Process. 19(3), 395–419 (1999)
Article
Google Scholar
J.H. Lambert, Photometria, sive, De mensura et gradibus luminis, colorum et umbrae (Photometry, or On the Measure and Gradations of Light, Color, and Shade) (Eberhardt Klett, Augsburg, 1760)
Google Scholar
H.W. Beer, Bestimmung der absorption des roten lichts in färbigen flüssigkeiten (determination of the absorption of red light in coloured liquids). Annalen der Physik und Chemie 86, 78–88 (1852)
ADS
Article
Google Scholar
C.J. Dasch, One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31(8), 1146–1152 (1992)
ADS
Article
Google Scholar
R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Soot particle measurements in diffusion flames. Combust. Flame 51, 203–218 (1983)
Article
Google Scholar
M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, Boston, 2013), pp. 303–386
Book
Google Scholar
F. Liu, K.A. Thomson, G.J. Smallwood, Numerical investigation of the effect of signal trapping on soot measurements using LII in laminar coflow diffusion flames. Appl. Phys. B 96(4), 671–682 (2009)
ADS
Article
Google Scholar
S.S. Krishnan, K. Lin, G.M. Faeth, Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames. J. Heat Transf. 123(2), 331 (2001)
Article
Google Scholar
S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Peak soot temperature in laser-induced incandescence measurements. Appl. Phys. B 83(3), 397–402 (2006)
ADS
Article
Google Scholar
S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, 2D soot volume fraction imaging in an ethylene diffusion flame by two-color laser-induced incandescence (2C-LII) technique and comparison with results from other optical diagnostics. Proc. Combust. Inst. 31(1), 869–876 (2007)
Article
Google Scholar
M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)
Google Scholar
A. D’Alessio, A. Di Lorenzo, F. Beretta, C. Venitozzi, Optical and chemical investigations on fuel-rich methane-oxygen premixed flames at atmospheric pressure. Int. Symp. Combust. 14, 941–953 (1973)
Article
Google Scholar
Profiles in steady and flickering methane/air, ethylene/air, and propane/air diffusion flames at atmospheric pressure using an axisymmetric burner geometry, http://www.nist.gov/el/fire_research/flamereduc/diffusion_notesb.cfm. Accessed 01 Jan 2013
J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements. Appl. Phys. B 104(2), 253–271 (2011)
ADS
Article
Google Scholar
W.H. Dalzell, A.F. Sarofim, Optical constants of soot and their application to heat-flux calculations. J. Heat Transf. 91, 100–104 (1969)
Article
Google Scholar
K.C. Smyth, C.R. Shaddix, The elusive history of \(m \approx 1.57-0.56i\) for the refractive index of soot. Combust. Flame 107(3), 314–320 (1996)
Article
Google Scholar