Skip to main content
Log in

Combined soot optical characterization using 2-D multi-angle light scattering and spectrally resolved line-of-sight attenuation and its implication on soot color-ratio pyrometry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Soot characterization using multiple techniques has been performed in a series of nitrogen-diluted ethylene coflow laminar diffusion flames. Soot aggregate sizes have been measured in two dimensions, as opposed to traditional point measurements, by a newly developed two-dimensional multi-angle light scattering technique where image processing was applied to align images for Guinier analysis. Extinction measurements have also been performed using spectrally resolved line-of-sight attenuation with an imaging spectrometer. Spectrally and spatially resolved extinction measurements have been obtained as well. Combined with previously obtained time-resolved laser-induced incandescence measurements of primary particle diameters, the scattering and absorption components of extinction can be estimated. The so-called dispersion exponent that describes the wavelength dependence of spectral emissivity was determined in two dimensions and found to improve the accuracy of soot color-ratio pyrometry measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. I. Glassman, Proc. Combust. Inst. 22(1), 295–311 (1989)

    Article  Google Scholar 

  2. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83(3), 333–354 (2006)

    Article  ADS  Google Scholar 

  3. M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90(3), 629–639 (2008)

    Article  ADS  Google Scholar 

  4. K.A. Thomson, D.R. Snelling, G.J. Smallwood, F. Liu, Appl. Phys. B 83(3), 469–475 (2006)

    Article  ADS  Google Scholar 

  5. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20(22), 2342–2344 (1995)

    Article  ADS  Google Scholar 

  6. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87(3), 503–521 (2007)

    Article  ADS  Google Scholar 

  7. J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96(4), 583–592 (2009)

    Article  ADS  Google Scholar 

  8. S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26(2), 2277–2284 (1996)

    Google Scholar 

  9. A. Jones, in Light Scattering Reviews, ed. by A. Kokhanovsky (Springer, Berlin, Heidelberg, 2006), pp. 393–444

  10. C.M. Sorensen, Aerosol Sci. Technol. 35(2), 648–687 (2001)

    Article  Google Scholar 

  11. H. Oltmann, J. Reimann, S. Will, Appl. Phys. B 106(1), 171–183 (2012)

    Article  ADS  Google Scholar 

  12. H. Oltmann, J. Reimann, S. Will, Combust. Flame 157(3), 516–522 (2010)

    Article  Google Scholar 

  13. P.B. Kuhn, B. Ma, B.C. Connelly, M.D. Smooke, M.B. Long, Proc. Combust. Inst. 33(1), 743–750 (2011)

    Article  Google Scholar 

  14. B. Connelly. (2009). Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques (Doctoral dissertation). Yale University, http://guilford.eng.yale.edu/bcc_thesis.pdf

  15. B. Ma, M.B. Long, Proc. Combust. Inst. 34(2), 3531–3539 (2013)

    Article  Google Scholar 

  16. B.C. Connelly, M.B. Long, M.D. Smooke, R.J. Hall, M.B. Colket, Proc. Combust. Inst. 32, 777–784 (2009)

    Article  Google Scholar 

  17. M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket, R.J. Hall, Combust. Flame 143(4), 613–628 (2005)

    Article  Google Scholar 

  18. B.C. Connelly, B.A.V. Bennett, M.D. Smooke, M.B. Long, Proc. Combust. Inst. 32(1), 879–886 (2009)

    Article  Google Scholar 

  19. http://www.adelaide.edu.au/cet/isfworkshop/data-sets/laminar/ (12/2013)

  20. S. Gangopadhyay, I. Elminyawi, C.M. Sorensen, Appl. Opt. 30(33), 4859–4864 (1991)

    Article  ADS  Google Scholar 

  21. K.A. Thomson, M.R. Johnson, D.R. Snelling, G.J. Smallwood, Appl. Opt. 47(5), 694–703 (2008)

    Article  ADS  Google Scholar 

  22. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38(12), 2478–2485 (1999)

    Article  ADS  Google Scholar 

  23. H. Zhao, N. Ladommatos, Prog. Energy Combust. Sci. 24(3), 221–255 (1998)

    Article  Google Scholar 

  24. B.S. Haynes, H. Jander, H.G. Wagner, Ber. Bunsenges. Phys. Chem. 84(6), 585–592 (1980)

    Article  Google Scholar 

  25. P.S. Greenberg, J.C. Ku, Appl. Opt. 36(22), 5514–5522 (1997)

    Article  ADS  Google Scholar 

  26. A.R. Coderre, K.A. Thomson, D.R. Snelling, M.R. Johnson, Appl. Phys. B 104(1), 175–188 (2011)

    Article  ADS  Google Scholar 

  27. F. Migliorini, K. Thomson, G. Smallwood, Appl. Phys. B 104(2), 273–283 (2011)

    Article  ADS  Google Scholar 

  28. C.M. Sorensen, J. Cai, N. Lu, Appl. Opt. 31(30), 6547–6557 (1992)

    Article  ADS  Google Scholar 

  29. MATLAB version 8.1.0. Natick, Massachusetts: The MathWorks Inc., 2013

  30. C.A. Glasbey, K.V. Mardia, J. Appl. Stat. 25(2), 155–171 (1998)

    Article  MATH  Google Scholar 

  31. F. Liu, K.A. Thomson, G.J. Smallwood, Combust. Flame 160(9), 1693–1705 (2013)

    Article  Google Scholar 

  32. C.J. Dasch, Appl. Opt. 31(8), 1146–1152 (1992)

    Article  ADS  Google Scholar 

  33. K.M. Martin. Acoustic modification of sooting combustion (Doctoral dissertation). The University of Texas at Austin, 2002

  34. S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, Appl. Opt. 37(33), 7865–7874 (1998)

    Article  ADS  Google Scholar 

  35. R.C. Millikan, J. Opt. Soc. Am. 51(6), 698–699 (1961)

    Article  Google Scholar 

  36. H.C. Hottel, F.P. Broughton, Ind. Eng. Chem. Anal. Ed. 4(2), 166–175 (1932)

    Article  Google Scholar 

  37. S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, Combust. Flame 115(1–2), 253–261 (1998)

    Article  Google Scholar 

  38. A. D’Alessio, F. Beretta, C. Venitozzi, Combust. Sci. Technol. 5(1), 263–272 (1972)

    Article  Google Scholar 

  39. C.R. Shaddix, Á.B. Palotás, C.M. Megaridis, M.Y. Choi, N.Y.C. Yang, Int. J. Heat Mass Transf. 48(17), 3604–3614 (2005)

    Article  Google Scholar 

  40. C.M. Sorensen, G.C. Roberts, J. Colloid Interface Sci. 186(2), 447–452 (1997)

    Article  Google Scholar 

  41. R.D. Mountain, G.W. Mulholland, Langmuir 4(6), 1321–1326 (1988)

    Article  Google Scholar 

  42. Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100(4), 621–633 (1995)

    Article  Google Scholar 

  43. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transf. 122(3), 517–524 (2000)

    Article  Google Scholar 

  44. B.J. Stagg, T.T. Charalampopoulos, Combust. Flame 94(4), 381–396 (1993)

    Article  Google Scholar 

  45. H. Chang, T.T. Charalampopoulos, Proc. Math. Phys. Sci. 430(1880), 577–591 (1990)

    Article  Google Scholar 

  46. B. Ma, G. Wang, G. Magnotti, R.S. Barlow, M.B. Long, Combust. Flame 161(4), 908–916 (2014)

    Article  Google Scholar 

  47. T.L. Farias, U.O. Köylü, M.G. Carvalho, Appl. Opt. 35(33), 6560–6567 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research was supported by the DOE Office of Basic Energy Sciences (Dr. Wade Sisk, contract monitor) and NASA (Dr. Dennis Stocker, contract monitor) under contracts DE-FG02-88ER13966 and NNC04AA03A, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Long, M.B. Combined soot optical characterization using 2-D multi-angle light scattering and spectrally resolved line-of-sight attenuation and its implication on soot color-ratio pyrometry. Appl. Phys. B 117, 287–303 (2014). https://doi.org/10.1007/s00340-014-5834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5834-x

Keywords

Navigation