Skip to main content
Log in

Thermo-optical properties of uniaxial NaT(XO4)2 laser host crystals (where T = Y, La, Gd or Bi, and X = W or Mo)

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Thermo-optic coefficients dn o/dT and dn e/dT were measured in tetragonal double tungstate and double molybdate crystals NaT(XO4)2 (where T = Y, La, Gd or Bi and X = W or Mo) by a laser beam deviation method in the spectral range 0.4–1.1 μm. Thermal expansion coefficients in the directions of a and c crystallographic axes were also measured. Analytical expressions for thermo-optic dispersion formulas were derived as series in 1/λ 2. All dn/dT values for NaT(XO4)2 crystals were found to be negative. Their absolute values satisfy the relation |dn e/dT| > |dn o/dT| for crystals without Bi and |dn o/dT| > |dn e/dT| for crystals with Bi. A clear tendency for dn/dT values to decrease with the increase of the volumetric thermal expansion coefficient α vol of the crystal was observed. This is related with dominant contribution of volumetric thermal expansion effect to the temperature dependence of the refractive index. Thermal coefficients of the optical path W = dn/dT + (n − 1)α T governing thermal lensing effect were calculated for different light propagation directions and polarizations as well as crystal athermal directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Cascales, M.D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, V. Petrov, Phys. Rev. B 74, 174114 (2006)

    Article  ADS  Google Scholar 

  2. J.M. Cano-Torres, M.D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F.J. Valle, M. Galán, G. Viera, JOSA B 23, 2494 (2006)

    Article  ADS  Google Scholar 

  3. M.H. Randles, J.E. Creamer, R.F. Belt, J. Cryst. Growth 128, 1016 (1993)

    Article  ADS  Google Scholar 

  4. M. Dubinskii, V. Fromzel, N. Ter-Gabrielyan, M.D. Serrano, D.E. Lahera, C. Cascales, C. Zaldo, Opt. Lett. 36, 3263 (2011)

    Article  ADS  Google Scholar 

  5. A. García-Cortés, J.M. Cano-Torres, M.D. Serrano, C. Cascales, C. Zaldo, S. Rivier, X. Mateos, U. Griebner, V. Petrov, IEEE J. Quant. Electron. 43, 758 (2007)

    Article  ADS  Google Scholar 

  6. J. Liu, J.M. Cano-Torres, C. Cascales, F. Esteban-Betegón, M.D. Serrano, V. Volkov, C. Zaldo, M. Rico, U. Griebner, V. Petrov, Phys. Stat. Sol. A 202, R29 (2005)

    Article  ADS  Google Scholar 

  7. A. García-Cortés, J.M. Cano-Torres, X. Han, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, V. Petrov, F.J. Valle, J. Appl. Phys. 101, 063110 (2007)

    Article  ADS  Google Scholar 

  8. A. Schmidt, S. Rivier, V. Petrov, U. Griebner, X. Han, J.M. Cano-Torres, A. García-Cortés, M.D. Serrano, C. Cascales, C. Zaldo, JOSA B 25, 1341 (2008)

    Article  ADS  Google Scholar 

  9. A.V. Mandrik, A.E. Troshin, V.E. Kisel, A.S. Yasukevich, G.N. Klavsut, N.V. Kuleshov, A.A. Pavlyuk, Appl. Phys. B 81, 1119 (2005)

    Article  ADS  Google Scholar 

  10. R. Peters, C. Kränkel, K. Petermann, G. Huber, Appl. Phys. B 91, 25–28 (2008)

    Article  ADS  Google Scholar 

  11. J. Liu, H. Zhang, J. Wang, V. Petrov, Opt. Express 15, 12900 (2007)

    Article  ADS  Google Scholar 

  12. R. Lan, L. Pan, I. Utkin, Q. Ren, H. Zhang, Z. Wang, R. Fedosejevs, Opt. Express 18, 4000 (2010)

    Article  ADS  Google Scholar 

  13. S. Zhao, L. Chen, H. Zhao, G. Li, L. Zhang, K. Yang, Opt. Laser Technol. 37, 187 (2005)

    Article  ADS  Google Scholar 

  14. J.M. Cano-Torres, M. Rico, X. Han, M.D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, C. Kränkel, Phys. Rev. B 84, 174207 (2011)

    Article  ADS  Google Scholar 

  15. J.M. Cano-Torres, X. Han, A. García-Cortés, M.D. Serrano, C. Zaldo, F.J. Valle, X. Mateos, S. Rivier, U. Griebner, V. Petrov, Mater. Sci. Eng. B 146, 22 (2008)

    Article  Google Scholar 

  16. X. Han, J.M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, V. Petrov, J. Appl. Phys. 103, 083110 (2008)

    Article  ADS  Google Scholar 

  17. Y.J. Chen, Y.F. Lin, W.J. Guo, X.H. Gong, J.H. Huang, Z.D. Luo, Y.D. Huang, Laser Phys. Lett. 9, 141 (2012)

    Article  ADS  Google Scholar 

  18. W. Guo, Y. Chen, Y. Lin, X. Gong, Z. Luo, Y. Huang, J. Phys. D 41, 115409 (2008)

    Article  ADS  Google Scholar 

  19. A. Ellens, H. Andres, M.L.H. der Heerdt, R.T. Wegh, A. Meijerink, G. Blasse, Phys. Rev. B 55, 180 (1997)

    Article  ADS  Google Scholar 

  20. K. Fu, Z.P. Wang, Z.X. Cheng, J.H. Liu, R.B. Song, H.C. Chen, Z.S. Shao, Opt. Laser Technol. 33, 593 (2001)

    Article  ADS  Google Scholar 

  21. Z. Cheng, S. Zhang, K. Fu, H. Cheng, Jpn. J. Appl. Phys. 40, 4038 (2001)

    Article  ADS  Google Scholar 

  22. N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier, C. Wyon, Appl. Phys. B 63, 593 (1996)

    ADS  Google Scholar 

  23. X. Han, F. Fusari, M.D. Serrano, A.A. Lagastky, J.M. Cano-Torres, C.T.A. Brown, C. Zaldo, W. Sibbett, Opt. Express 18, 5413 (2010)

    Article  ADS  Google Scholar 

  24. A. Lagatsky, X. Han, M.D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M.D. Dawson, J.A. Gupta, C.T.A. Brown, W. Sibbett, Opt. Lett. 35, 3027 (2010)

    Article  ADS  Google Scholar 

  25. F.G. Yang, C.L. Sun, Z.Y. You, C.Y. Tu, G. Zhang, H.Y. Zhu, Laser Phys. 20, 1695 (2010)

    Article  ADS  Google Scholar 

  26. J.H. Huang, Y.J. Chen, X.H. Gong, Y.F. Lin, Z.D. Luo, Y.D. Huang, JOSA B 27, 2605 (2010)

    Article  ADS  Google Scholar 

  27. K.A. Subbotin, E.V. Zharikov, V.A. Smirnov, Opt. Spectr. 92l, 601 (2002)

    Article  ADS  Google Scholar 

  28. S. Perets, M. Tseitlin, R.Z. Shneck, Z. Burshtein, Opt. Mater. 30, 1251 (2008)

    Article  ADS  Google Scholar 

  29. X. Han, A. García-Cortés, M.D. Serrano, C. Zaldo, C. Cascales, Chem. Mater. 19, 3002 (2007)

    Article  Google Scholar 

  30. J. Fan, H. Zhang, W. Yu, H. Yu, J. Wang, M. Jiang, J. Appl. Cryst. 41, 584 (2008)

    Article  Google Scholar 

  31. G.Q. Xie, D.Y. Tang, H.J. Zhang, J.Y. Wang, L.J. Qian, Opt. Express 16, 1686 (2008)

    Article  ADS  Google Scholar 

  32. Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, Y. Wang, Appl. Phys. B 86, 529 (2007)

    Article  ADS  Google Scholar 

  33. H. Wang, G. Jia, F. Yang, Y. Wei, Z. You, Y. Wang, J. Li, Z. Zhu, X. Lu, C. Tu, Appl. Phys. B 83, 579 (2006)

    Article  ADS  Google Scholar 

  34. J. Fan, H. Zhang, J. Wang, Z. Ling, H. Xia, X. Chen, Y. Yu, Q. Lu, M. Jiang, J. Phys. D Appl. Phys. 39, 1034 (2006)

    Article  ADS  Google Scholar 

  35. X. Li, Z. Lin, L. Zhang, G. Wang, J. Cryst. Growth 290, 670 (2006)

    Article  ADS  Google Scholar 

  36. X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, C. Tu, Solid State Commun. 146, 279 (2008)

    Article  ADS  Google Scholar 

  37. S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, Progr. Quant. Electron. 30, 89 (2006)

    Article  ADS  Google Scholar 

  38. S. Vatnik, M.C. Pujol, J.J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, Appl. Phys. B 95, 653 (2009)

    Article  ADS  Google Scholar 

  39. P.A. Loiko, K.V. Yumashev, N.V. Kuleshov, A.A. Pavlyuk, Appl. Phys. B 102, 117 (2011)

    Article  ADS  Google Scholar 

  40. X. Han, D.E. Lahera, M.D. Serrano, C. Cascales, C. Zaldo, Appl. Phys. B 108, 509 (2012)

    Article  ADS  Google Scholar 

  41. G. Ghosh, Handbook of thermo-optic coefficients of optical materials with applications (Academic Press, London, 1998)

    Google Scholar 

  42. P.A. Loiko, K.V. Yumashev, N.V. Kuleshov, G.E. Rachkovskaya, A.A. Pavlyuk, Opt. Mater. 33, 1688 (2011)

    Article  ADS  Google Scholar 

  43. P.A. Loiko, K.V. Yumashev, N.V. Kuleshov, G.E. Rachkovskaya, A.A. Pavlyuk, Opt. Mater. 34, 23 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness under project MAT2011-29255-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Yumashev.

Appendices

Appendix 1

Measurements of thermal expansion coefficients, α, have been performed previously for several tetragonal double tungstate and double molybdate crystals (without Bi). The experiments were performed in various conditions by two experimental methods, namely, dilatometry and the variation of the unit cell lattice parameters obtained from XRD analysis. Table 4 of this Appendix summarizes the reported results along with those obtained in the present work.

Table 4 Summary of thermal expansion coefficients α (10−6 K−1) for tetragonal (uniaxial) double tungstate and double molybdate M+T3+(XO4)2 crystals reported in the literature

Figure 4 represents typical results obtained by XRD method for undoped NaBi(WO4)2 crystal. The results show some α evolution in the first 100–200 K above room temperature and more stable value for higher temperatures. This high-temperature (T > 573 K) value agrees with the results obtained by dilatometry at lower temperatures, see for instance the good coincidence between the results presented in Table 4 for undoped NaY(WO4)2 and NaBi(WO4)2 crystals.

Fig. 4
figure 4

Thermal expansion coefficients of NaBi(WO4)2 crystal obtained from the evolution of crystal lattice parameters

For all crystals under consideration, the anisotropy of thermal expansion coefficients (denoted as α c /α a ) commonly is close to 2. Therefore, the stress associated with non-uniform thermal expansion effect will be lower in comparison with monoclinic double tungstates. Indeed, such an anisotropy degree, α 11:α 22:α 33, equals 2.6:1:5.4 for KLu(WO4)2 or even 4.5:1:12.1 for KGd(WO4)2 [43]. With few exceptions, most of the previously reported results and those presented now agree within the uncertainties inherent to the accuracy of the methods and the variation in dopant concentration of the crystals analyzed.

Appendix 2

See Table 5.

Table 5 Anisotropy of thermo-optic coefficients dn/dT (10−6 K−1) for uniaxial double tungstate and double molybdate crystals NaT(XO4)2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loiko, P.A., Han, X., Yumashev, K.V. et al. Thermo-optical properties of uniaxial NaT(XO4)2 laser host crystals (where T = Y, La, Gd or Bi, and X = W or Mo). Appl. Phys. B 111, 279–287 (2013). https://doi.org/10.1007/s00340-012-5331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5331-z

Keywords

Navigation