Skip to main content
Log in

Relationship between soot volume fraction and LII signal in AC-LII: effect of primary soot particle diameter polydispersity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Theoretical analysis and numerical calculations were conducted to investigate the relationship between soot volume fraction and laser-induced incandescence (LII) signal within the context of the auto-compensating LII technique. The emphasis of this study lies in the effect of primary soot particle diameter polydispersity. The LII model was solved for a wide range of primary soot particle diameters from 2 to 80 nm. For a log-normally distributed soot particle ensemble encountered in a typical laminar diffusion flame at atmospheric pressure, the LII signals at 400 and 780 nm were calculated. To quantify the effects of sublimation and differential conduction cooling on the determined soot volume fraction in auto-compensating LII, two new quantities were introduced and demonstrated to be useful in LII study: an emission intensity distribution function and a scaled soot volume fraction. When the laser fluence is sufficiently low to avoid soot mass loss due to sublimation, accurate soot volume fraction can be obtained as long as the LII signals are detected within the first 200 ns after the onset of the laser pulse. When the laser fluence is in the high fluence regime to induce significant sublimation, however, the LII signals should be detected as early as possible even before the laser pulse reaches its peak when the laser fluence is sufficiently high. The analysis method is shown to be useful to provide guidance for soot volume fraction measurements using the auto-compensating LII technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.C. Eckbreth, Effects of laser-modulated particle incandescence on Raman scattering diagnostics. J. Appl. Phys. 48(11), 4473–4479 (1977)

    Article  ADS  Google Scholar 

  2. L.A. Melton, Soot diagnostics based on laser heating. Appl. Opt. 23(13), 2201–2208 (1984)

    Article  ADS  Google Scholar 

  3. J. Liggio, M. Gordon, G. Smallwood, S.-M. Li, C. Stroud, R. Staebler, G. Lu, P. Lee, B. Taylor, J.R. Brook, Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements. Environ. Sci. Tech. 46, 4819–4828 (2012)

    Article  Google Scholar 

  4. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Comparison of LII and TEM sizing during synthesis of iron particle chains. Proc. Combust. Inst. 30, 1689–1697 (2005)

    Article  Google Scholar 

  5. F. Cignoli, C. Bellomunno, S. Maffi, G. Zizak, Laser-induced incandescence of Titania nanoparticles synthesized in a flame. Appl. Phys. B 96, 593–599 (2009)

    Article  ADS  Google Scholar 

  6. R.L. Vander Wal, K.J. Weiland, Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction. Appl. Phys. B 59, 445–452 (1994)

    Article  ADS  Google Scholar 

  7. R.L. Vander Wal, Laser-induced incandescence: detection issues. Appl. Phys. B 35(33), 6548–6559 (1996)

    Google Scholar 

  8. C.R. Shaddix, K.C. Smyth, Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust. Flame 107, 418–452 (1996)

    Article  Google Scholar 

  9. R.L. Vander Wal, Laser-induced incandescence: excitation and detection conditions, material transformations and calibration. Appl. Phys. B 96, 601–611 (2009)

    Article  ADS  Google Scholar 

  10. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Laser-induced incandescence: recent trends and current questions. Appl. Phys. B 83, 333–354 (2006)

    Article  ADS  Google Scholar 

  11. B. Quay, T.-W. Lee, T. Ni, R.J. Santoro, Spatially resolved measurements of soot volume fraction using laser-induced incandescence. Combust. Flame 97, 384–392 (1994)

    Article  Google Scholar 

  12. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. Appl. Opt. 34(30), 7083–7091 (1995)

    Article  ADS  Google Scholar 

  13. R.T. Wainner, J.M. Seitzman, Soot measurements in a simulated engine exhaust using laser-induced incandescence. AIAA J. 37(6), 738–743 (1999)

    Article  ADS  Google Scholar 

  14. Dec, J.E., zur Loye, A.O., Siebers, D.L., Soot distribution in a D.I. diesel engine using 2-D laser-induced incandescence imaging, SAE paper 910224 (1991)

  15. N.P. Tait, D.A. Greenhalgh, PLIF imaging of fuel fraction in practical devices and LII imaging of soot. Ber. Bunsenges. Phys. Chem. 97(12), 1619–1625 (1993)

    Article  Google Scholar 

  16. P.-E. Bengtsson, Aldén, Soot-visualization strategies using laser techniques (Laser-induced fluorescence in C2 from laser-vaporized soot and laser-induced soot incandescence). Appl. Phys. B 60, 51–59 (1995)

    Article  ADS  Google Scholar 

  17. D.J. Bryce, N. Ladommatos, H. Zhao, Quantitative investigation of soot distribution by laser-induced incandescence. Appl. Opt. 39(27), 5012–5022 (2000)

    Article  ADS  Google Scholar 

  18. B. Axelsson, R. Collin, Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration. Appl. Phys. B 72, 361–372 (2001)

    Article  ADS  Google Scholar 

  19. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl. Opt. 44(31), 6773–6785 (2005)

    Article  ADS  Google Scholar 

  20. S. De Iuliis, F. Cignoli, G. Zizak, Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurement in flames. Appl. Opt. 44(34), 7414–7423 (2005)

    Article  ADS  Google Scholar 

  21. B. Mewes, J.M. Seitzman, Soot volume fraction and particle size measurements with laser-induced incandescence. Appl. Opt. 36(3), 709–717 (1997)

    Article  ADS  Google Scholar 

  22. H. Bladh, J. Johnsoon, P.-E. Bengtsson, On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size. Appl. Phys. B 90, 109–125 (2008)

    Article  ADS  Google Scholar 

  23. J. Reimann, S.-A. Kuhlmann, S. Will, Improvement in soot concentration measurements by laser-induced incandescence (LII) through a particle size correction. Combust. Flame 153, 650–654 (2008)

    Article  Google Scholar 

  24. F. Migliorini, S. De Iuliis, S. Maffi, F. Cignoli, G. Zizak, Investigation on the influence of soot size on prompt LII signals in flames. Appl. Phys. B 96, 637–643 (2009)

    Article  ADS  Google Scholar 

  25. Ü.O. Köylu, G.M. Faeth, Radiative properties of flame-generated soot. J. Heat Transf. 115, 409–417 (1993)

    Article  Google Scholar 

  26. G.W. Mulholland, R.D. Mountain, Coupled dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates. Combust. Flame 119, 56–68 (1999)

    Article  Google Scholar 

  27. F. Liu, G.J. Smallwood, The effect of particle aggregation on the absorption and emission properties of mono- and polydisperse soot aggregates. Appl. Phys. B 104, 343–355 (2011)

    Article  ADS  Google Scholar 

  28. F. Liu, G.J. Smallwood, D.R. Snelling, Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers. JQSRT 93, 301–312 (2005)

    Article  ADS  Google Scholar 

  29. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  30. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83, 355–382 (2006)

    Article  ADS  Google Scholar 

  31. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot. J. Heat Transf. 123, 814–818 (2001)

    Article  Google Scholar 

  32. Snelling, D.R., Liu, F., Smallwood, G.J., Gülder, Ö.L., Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity, NHTC2000-12132, in Proceedings of the 34th National Heat Transfer Conference, Pittsburgh, Pennsylvania, 20–22 August 2000

  33. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Appl. Phys. B 87, 503–521 (2007)

    Article  ADS  Google Scholar 

  34. H.A. Michelsen, Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118, 7012–7045 (2003)

    Article  ADS  Google Scholar 

  35. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII). Combust. Flame 120, 439–450 (2000)

    Article  Google Scholar 

  36. K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D. Wang, Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar flame. Combust. Flame 138, 195–198 (2004)

    Article  Google Scholar 

  37. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. Int. J. Heat Mass Transf. 49, 777–788 (2006)

    Article  Google Scholar 

  38. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII. Appl. Phys. B 83, 383–395 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial support by NRCan PERD AFTER Project C23.006 and NRCan PERD P&E Project C11.008 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengshan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Smallwood, G.J. Relationship between soot volume fraction and LII signal in AC-LII: effect of primary soot particle diameter polydispersity. Appl. Phys. B 112, 307–319 (2013). https://doi.org/10.1007/s00340-012-5330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5330-0

Keywords

Navigation