Skip to main content
Log in

Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a detailed study of the Baryscan technique, a new efficient alternative to the widespread Z-scan technique which has been demonstrated [Opt. Lett. 36:8, 2011] to reach among the highest sensitivity levels. This method is based upon the measurement of optical nonlinearities by means of beam centroid displacements with a position sensitive detector and is able to deal with any kind of lensing effect. This technique is applied here to measure pump-induced electronic refractive index changes (population lens), which can be discriminated from parasitic thermal effects by using a time-resolved Baryscan experiment. This method is validated by evaluating the polarizability variation at the origin of the population lens observed in the reference Cr3+:GSGG laser material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 2003)

    Book  Google Scholar 

  2. A. Sherman, E. Benkler, H.R. Telle, Opt. Lett. 34, 49 (2009)

    Article  Google Scholar 

  3. J. Yang, Y. Song, Opt. Lett. 34, 157 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  5. P.B. Chapple, J. Staromlynska, J.A. Hermann, T.J. McKay, R.G. McDuff, J. Nonlinear Opt. Phys. Mater. 6, 251 (1997)

    Article  ADS  Google Scholar 

  6. W. Zhao, P. Palffy-Muhoray, Appl. Phys. Lett. 63, 1613 (1993)

    Article  ADS  Google Scholar 

  7. B. Gu, H.-T. Wang, Opt. Commun. 263, 322 (2006)

    Article  ADS  Google Scholar 

  8. S. Hughes, J.M. Burzler, Phys. Rev. A 56, R1103 (1997)

    Article  ADS  Google Scholar 

  9. W. Zhang, M.G. Kuzyk, Appl. Phys. Lett. 89, 101103 (2006)

    Article  ADS  Google Scholar 

  10. R.E. Bridges, G.L. Fischer, R.W. Boyd, Opt. Lett. 20, 1821 (1995)

    Article  ADS  Google Scholar 

  11. G. Tsigaridas, M. Fakis, I. Polyzos, M. Tsibouri, P. Persephonis, V. Giannetas, J. Opt. Soc. Am. B 20, 670 (2003)

    Article  ADS  Google Scholar 

  12. G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, V. Giannetas, Appl. Phys. B, Lasers Opt. 77, 71 (2003)

    Article  Google Scholar 

  13. H. Ma, A.S.L. Gomes, Cid B. de Araujo, Appl. Phys. Lett. 59, 2666 (1991)

    Article  ADS  Google Scholar 

  14. B. Yao, L. Ren, X. Hou, J. Opt. Soc. Am. B 20, 1290 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Xia, D.J. Hagan, M. Sheik-Bahae, E.W. Van Stryland, Opt. Lett. 19, 317 (1994)

    Article  ADS  Google Scholar 

  16. T. Godin, M. Fromager, B. Päivänranta, N. Passilly, G. Boudebs, E. Cagniot, K. Aït-Ameur, Appl. Phys. B, Lasers Opt. 95, 579 (2009)

    Article  ADS  Google Scholar 

  17. K. Fedus, G. Boudebs, Opt. Commun. 284, 1057 (2011)

    Article  ADS  Google Scholar 

  18. A.O. Marcano, H. Maillotte, D. Gindre, D. Métin, Opt. Lett. 21, 101 (1996)

    Article  ADS  Google Scholar 

  19. G. Boudebs, S. Cherukulappurath, Phys. Rev. A 69, 053813 (2004)

    Article  ADS  Google Scholar 

  20. R.A. Ganeev, Appl. Phys. B, Lasers Opt. 91, 273 (2008)

    Article  ADS  Google Scholar 

  21. I.J. Blewett, J. Stokes, A. Tookey, A.K. Kar, B.S. Wherrett, Opt. Laser Technol. 29, 355 (1997)

    Article  ADS  Google Scholar 

  22. F.E. Hernandez, A.O. Marcano, H. Maillotte, Opt. Commun. 134, 529 (1997)

    Article  ADS  Google Scholar 

  23. T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, K. Ait-Ameur, Opt. Lett. 36, 1401 (2011)

    Article  ADS  Google Scholar 

  24. Y. Yeh, C.C. Wang, M.J. Jang, Y.-P. Lin, Opt. Lasers Eng. 47, 599 (2009)

    Article  Google Scholar 

  25. C.S. Vikram, H.J. Caulfield, Appl. Opt. 46, 5137 (2007)

    Article  ADS  Google Scholar 

  26. H. Gilles, B. Cheron, J. Hamel, Opt. Commun. 190, 179 (2001)

    Article  ADS  Google Scholar 

  27. E. Anashkina, O. Antipov, J. Opt. Soc. Am. B 27, 363 (2010)

    Article  ADS  Google Scholar 

  28. O.L. Antipov, O.N. Eremeykin, A.P. Savikin, V.A. Vorob’ev, D.V. Bredikhin, M.S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003)

    Article  ADS  Google Scholar 

  29. T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Aït-Ameur, R.A. Cruz, T. Catunda, J. Opt. Soc. Am. B, Doc. ID 156017 (posted 3 January 2012)

  30. A.A. Andrade, E. Tenorio, T. Catunda, M.L. Baesso, A. Cassanho, H.P. Jenssen, J. Opt. Soc. Am. B 16, 395 (1999)

    Article  ADS  Google Scholar 

  31. J.M. Hogan, J. Hammer, S.W. Chiow, S. Dickerson, D.M.S. Johnson, T. Kovachy, A. Sugarbaker, M.A. Kasevich, Opt. Lett. 36, 1698 (2011)

    Article  ADS  Google Scholar 

  32. D. Zheng, X. Wang, F. Tang, Chin. Opt. Lett. 5, 403 (2007)

    ADS  Google Scholar 

  33. H.A. Andersson, A. Manuilskiy, G. Thungström, A. Lundgren, H.-E. Nilsson, Measurement 42, 668 (2009)

    Article  Google Scholar 

  34. F. Docchio, S. Corini, M. Perini, R.S. Kasana, IEEE Trans. Instrum. Meas. 44, 1 (1995)

    Article  Google Scholar 

  35. N. Hermosa, A. Aiello, J.P. Woerdman, Opt. Lett. 36, 409 (2011)

    Article  Google Scholar 

  36. H. Gilles, S. Girard, J. Hamel, Opt. Lett. 27, 1421 (2002)

    Article  ADS  Google Scholar 

  37. O.L. Antipov, D.V. Bredikhin, O.N. Eremeykin, A.P. Savikin, E.V. Ivakin, A.V. Sukhadolau, Opt. Lett. 31, 763 (2006)

    Article  ADS  Google Scholar 

  38. A.A. Fotiadi, O.L. Antipov, P. Mégret, Opt. Express 16, 12658 (2008)

    Google Scholar 

  39. D. Škrabelj, M. Gorjan, I. Drevenšek-Olenik, M. Marincek, Appl. Phys. B, Lasers Opt. 105, 793 (2011)

    Article  ADS  Google Scholar 

  40. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorgé, J.-L. Doualan, A. Hirth, G. Quarles, J. Opt. Soc. Am. B 21, 531 (2004)

    Article  ADS  Google Scholar 

  41. R. Soulard, A. Brignon, J.P. Huignard, R. Moncorgé, J. Opt. Soc. Am. B 27, 2203 (2010)

    Article  ADS  Google Scholar 

  42. R. Soulard, A. Brignon, S. Raby, E. Durand, R. Moncorgé, Appl. Phys. B, Lasers Opt. (2011). doi:10.1007/s00340-011-4739-1

    Google Scholar 

  43. M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, K. Aït-Ameur, Opt. Commun. 284, 1975 (2011)

    Article  ADS  Google Scholar 

  44. S.M. Lima, T. Catunda, Phys. Rev. Lett. 99, 243902 (2007)

    Article  ADS  Google Scholar 

  45. R. Soulard, A. Zinoviev, J.-L. Doualan, E. Ivakin, O. Antipov, R. Moncorgé, Opt. Express 18, 1553 (2010)

    Article  ADS  Google Scholar 

  46. U.O. Farrukh, A.M. Buoncristiani, C.E. Byvik, IEEE J. Quantum Electron. 24, 2253 (1988)

    Article  ADS  Google Scholar 

  47. E. Cagniot, T. Godin, M. Fromager, P. Leprince, R. Moncorgé, K. Aït-Ameur, J. Mod. Opt. 58, 1529 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Conseil Régional Basse-Normandie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Godin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godin, T., Fromager, M., Cagniot, E. et al. Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique. Appl. Phys. B 107, 733–740 (2012). https://doi.org/10.1007/s00340-012-5043-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5043-4

Keywords

Navigation