Skip to main content
Log in

Optical scattering imaging with sub-nanometer precision based on position-ultra-sensitive giant Lamb shift

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The Lamb shift of a quantum emitter in close proximity to a plasmonic nanostructure can be three or more orders of magnitude larger than that in the free space and is ultra-sensitive to the emitter position and polarization. We demonstrate that this large Lamb shift can be sensitively observed from the scattering or absorption spectrum dip shift of the coupled system when the plasmonic nanoparticle or tip scans the emitter. Using these observations, we propose a scanning optical scattering imaging method based on the plasmonic-enhanced Lamb shift with achieves sub-nanometer resolution. Our method is based on the scattering or absorption spectrum of the plasmon-emitter coupling system, which is free of the fluorescence quenching problem and easier to implement in a plasmon-emitter coupling system. In addition, our scheme works even if the quantum emitter is slightly below the dielectric surface, which can bring about broader applications, such as detecting atoms and molecules or quantum dots above or under a surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Vangindertael, R. Camacho, W. Sempels, H. Mizuno, P. Dedecker, and K. P. F. Janssen, Methods Appl. Fluoresc. 6, 022003 (2018).

    Article  ADS  Google Scholar 

  2. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).

    Article  ADS  Google Scholar 

  3. X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, Light Sci. Appl. 4, e230 (2015).

    Article  ADS  Google Scholar 

  4. M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).

    Article  Google Scholar 

  5. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photon. 6, 312 (2012).

    Article  ADS  Google Scholar 

  6. X. Zeng, M. Al-Amri, and M. S. Zubairy, Phys. Rev. B 90, 235418 (2014).

    Article  ADS  Google Scholar 

  7. K. Zhanghao, X. Chen, W. Liu, M. Li, Y. Liu, Y. Wang, S. Luo, X. Wang, C. Shan, H. Xie, J. Gao, X. Chen, D. Jin, X. Li, Y. Zhang, Q. Dai, and P. Xi, Nat. Commun. 10, 4694 (2019), arXiv: 1712.05092.

    Article  ADS  Google Scholar 

  8. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).

    Article  ADS  Google Scholar 

  9. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).

    Article  Google Scholar 

  10. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).

    Article  ADS  Google Scholar 

  11. G. Binning, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  ADS  Google Scholar 

  12. F. J. Giessibl, Rev. Mod. Phys. 75, 949 (2003).

    Article  ADS  Google Scholar 

  13. P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelinek, Phys. Rev. B 90, 085421 (2014), arXiv: 1406.3562.

    Article  ADS  Google Scholar 

  14. R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, Science 262, 1425 (1993).

    Article  ADS  Google Scholar 

  15. C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, Phys. Rev. Lett. 105, 217402 (2010).

    Article  ADS  Google Scholar 

  16. Y. Zhang, Y. Luo, Y. Zhang, Y. J. Yu, Y. M. Kuang, L. Zhang, Q. S. Meng, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, Nature 531, 623 (2016).

    Article  ADS  Google Scholar 

  17. Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, Nat. Commun. 8, 15225 (2017).

    Article  ADS  Google Scholar 

  18. A. Roslawska, T. Neuman, B. Doppagne, A. G. Borisov, M. Romeo, F. Scheurer, J. Aizpurua, and G. Schull, Phys. Rev. X 12, 011012 (2022), arXiv: 2107.01072.

    Google Scholar 

  19. D. Vobornik, and S. Vobornik, Bosn. J. Basic Med. Sci. 8, 63 (2008).

    Article  Google Scholar 

  20. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, Phys. Rev. Lett. 93, 180801 (2004).

    Article  ADS  Google Scholar 

  21. N. Mauser, and A. Hartschuh, Chem. Soc. Rev. 43, 1248 (2014).

    Article  Google Scholar 

  22. P. A. D. Goncalves, T. Christensen, N. Rivera, A. P. Jauho, N. A. Mortensen, and M. Soljacic, Nat. Commun. 11, 366 (2020), arXiv: 1904.09279.

    Article  ADS  Google Scholar 

  23. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).

    Article  ADS  Google Scholar 

  24. W. Chen, S. Zhang, Q. Deng, and H. Xu, Nat. Commun. 9, 801 (2018).

    Article  ADS  Google Scholar 

  25. A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, Phys. Rev. Lett. 112, 253601 (2014).

    Article  ADS  Google Scholar 

  26. P. Törm ä, and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2015), arXiv: 1405.1661.

    Article  ADS  Google Scholar 

  27. P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, Phys. Rev. Lett. 119, 233901 (2017).

    Article  ADS  Google Scholar 

  28. X. Zeng, G. Li, Y. Yang, and S. Zhu, Phys. Rev. A 86, 033819 (2012).

    Article  ADS  Google Scholar 

  29. M. L. Andersen, S. Stobbe, A. S. Søensen, and P. Lodahl, Nat. Phys. 7, 215 (2011).

    Article  Google Scholar 

  30. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, Nat. Commun. 7, ncomms11823 (2016), arXiv: 1511.00263.

    Article  Google Scholar 

  31. R. Liu, Z. K. Zhou, Y. C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X. H. Wang, Phys. Rev. Lett. 118, 237401 (2017).

    Article  ADS  Google Scholar 

  32. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, Nature 535, 127 (2016).

    Article  ADS  Google Scholar 

  33. G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, Phys. Rev. Lett. 114, 157401 (2015), arXiv: 1501.02123.

    Article  ADS  Google Scholar 

  34. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, Science 354, 726 (2016).

    Article  ADS  Google Scholar 

  35. M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sanchez-Portal, Nano Lett. 15, 3410 (2015).

    Article  ADS  Google Scholar 

  36. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Nature 498, 82 (2013).

    Article  ADS  Google Scholar 

  37. Z. He, Z. Han, M. Kizer, R. J. Linhardt, X. Wang, A. M. Sinyukov, J. Wang, V. Deckert, A. V. Sokolov, J. Hu, and M. O. Scully, J. Am. Chem. Soc. 141, 753 (2019).

    Article  Google Scholar 

  38. J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, Nature 568, 78 (2019).

    Article  ADS  Google Scholar 

  39. Z. He, Z. Han, J. Yuan, A. M. Sinyukov, H. Eleuch, C. Niu, Z. Zhang, J. Lou, J. Hu, D. V. Voronine, and M. O. Scully, Sci. Adv. 5, eaau8763 (2019).

    Article  ADS  Google Scholar 

  40. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, Nat. Photon. 3, 654 (2009).

    Article  ADS  Google Scholar 

  41. K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, Nat. Photon. 6, 459 (2012).

    Article  ADS  Google Scholar 

  42. C. R. Simovski, M. S. M. Mollaei, and P. M. Voroshilov, Phys. Rev. B 101, 245421 (2020).

    Article  ADS  Google Scholar 

  43. H. M. Baghramyan, and C. Cirací, Nanophotonics 11, 2473 (2022).

    Article  Google Scholar 

  44. B. Yang, G. Chen, A. Ghafoor, Y. Zhang, Y. Zhang, Y. Zhang, Y. Luo, J. Yang, V. Sandoghdar, J. Aizpurua, Z. Dong, and J. G. Hou, Nat. Photon. 14, 693 (2020).

    Article  ADS  Google Scholar 

  45. C. Cohen-Tannoudji, J. Dupnot-Roc, and G. Grynberg, Atom-photon Interactions: Basic Processes and Applications (Wiley-VCH, Berlin, 1998).

    Book  Google Scholar 

  46. M. O. Scully, and A. A. Svidzinsky, Science 328, 1239 (2010).

    Article  ADS  Google Scholar 

  47. A. Fragner, M. Göppl, J. M. Fink, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, Science 322, 1357 (2008).

    Article  ADS  Google Scholar 

  48. S. John, and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).

    Article  ADS  Google Scholar 

  49. M. Marrocco, M. Weidinger, R. T. Sang, and H. Walther, Phys. Rev. Lett. 81, 5784 (1998).

    Article  ADS  Google Scholar 

  50. T. Rentrop, A. Trautmann, F. A. Olivares, F. Jendrzejewski, A. Komnik, and M. K. Oberthaler, Phys. Rev. X 6, 041041 (2016), arXiv: 1605.01874.

    Google Scholar 

  51. M. Silveri, S. Masuda, V. Sevriuk, K. Y. Tan, M. Jenei, E. Hyyppä, F. Hassler, M. Partanen, J. Goetz, R. E. Lake, L. Grönberg, and M. Möttönen, Nat. Phys. 15, 533 (2019), arXiv: 1809.00822.

    Article  Google Scholar 

  52. D. Wang, H. Kelkar, D. Martin-Cano, D. Rattenbacher, A. Shkarin, T. Utikal, S. Götzinger, and V. Sandoghdar, Nat. Phys. 15, 483 (2019), arXiv: 1809.07526.

    Article  Google Scholar 

  53. S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, Phys. Rev. Lett. 84, 2136 (2000).

    Article  ADS  Google Scholar 

  54. Q. Liu, H. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, Opt. Lett. 35, 2898 (2010).

    Article  ADS  Google Scholar 

  55. X. H. Wang, Y. S. Kivshar, and B. Y. Gu, Phys. Rev. Lett. 93, 073901 (2004).

    Article  ADS  Google Scholar 

  56. A. Rahmani, P. C. Chaumet, F. de Fornel, and C. Girard, Phys. Rev. A 56, 3245 (1997).

    Article  ADS  Google Scholar 

  57. Q. Sun, M. Al-Amri, A. Kamli, and M. S. Zubairy, Phys. Rev. A 77, 062501 (2008).

    Article  ADS  Google Scholar 

  58. C. van Vlack, P. T. Kristensen, and S. Hughes, Phys. Rev. B 85, 075303 (2012), arXiv: 1110.3306.

    Article  ADS  Google Scholar 

  59. C. Henkel, and V. Sandoghdar, Opt. Commun. 158, 250 (1998).

    Article  ADS  Google Scholar 

  60. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, Nat. Phys. 9, 329 (2013), arXiv: 1312.6806.

    Article  Google Scholar 

  61. R. Liu, Z. Liao, Y. C. Yu, and X. H. Wang, Phys. Rev. B 103, 235430 (2021), arXiv: 2003.06982.

    Article  ADS  Google Scholar 

  62. H. Hu, Z. Shi, S. Zhang, and H. Xu, J. Chem. Phys. 155, 074104 (2021).

    Article  ADS  Google Scholar 

  63. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun. 3, 825 (2012).

    Article  ADS  Google Scholar 

  64. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, J. Phys.-Condens. Matter 27, 183204 (2015), arXiv: 1412.0942.

    Article  ADS  Google Scholar 

  65. D. Zhao, Y. Gu, J. Wu, J. Zhang, T. Zhang, B. D. Gerardot, and Q. Gong, Phys. Rev. B 89, 245433 (2014).

    Article  ADS  Google Scholar 

  66. B. Rousseaux, D. G. Baranov, T. J. Antosiewicz, T. Shegai, and G. Johansson, Phys. Rev. Res. 2, 033056 (2020), arXiv: 1910.08150.

    Article  Google Scholar 

  67. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, Nano Lett. 11, 2318 (2011).

    Article  ADS  Google Scholar 

  68. E. Waks, and D. Sridharan, Phys. Rev. A 82, 043845 (2010).

    Article  ADS  Google Scholar 

  69. S. Hughes, M. Richter, and A. Knorr, Opt. Lett. 43, 1834 (2018).

    Article  ADS  Google Scholar 

  70. S. Franke, S. Hughes, M. K. Dezfouli, P. T. Kristensen, K. Busch, A. Knorr, and M. Richter, Phys. Rev. Lett. 122, 213901 (2019), arXiv: 1808.06392.

    Article  ADS  Google Scholar 

  71. T. Gruner, and D. G. Welsch, Phys. Rev. A 53, 1818 (1996).

    Article  ADS  Google Scholar 

  72. H. T. Dung, S. Y. Buhmann, L. Knoll, D. G. Welsch, S. Scheel, and J. Kastel, Phys. Rev. A 68, 043816 (2003).

    Article  ADS  Google Scholar 

  73. H. Zheng, S. Y. Zhu, and M. S. Zubairy, Phys. Rev. Lett. 101, 200404 (2008), arXiv: 0807.4273.

    Article  ADS  Google Scholar 

  74. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  ADS  Google Scholar 

  75. W. Chen, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Phys. Rev. Lett. 127, 140504 (2021), arXiv: 2103.06274.

    Article  ADS  Google Scholar 

  76. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, ACS Nano 4, 6369 (2010).

    Article  Google Scholar 

  77. A. Ridolfo, O. di Stefano, N. Fina, R. Saija, and S. Savasta, Phys. Rev. Lett. 105, 263601 (2010).

    Article  ADS  Google Scholar 

  78. J. Hakami, L. Wang, and M. S. Zubairy, Phys. Rev. A 89, 053835 (2014).

    Article  ADS  Google Scholar 

  79. S. N. Gupta, O. Bitton, T. Neuman, R. Esteban, L. Chuntonov, J. Aizpurua, and G. Haran, Nat. Commun. 12, 1310 (2021).

    Article  ADS  Google Scholar 

  80. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

    Book  Google Scholar 

  81. V. Karanikolas, I. Thanopulos, J. D. Cox, T. Kuroda, J. Inoue, N. A. Mortensen, E. Paspalakis, and C. Tserkezis, Phys. Rev. B 104, L201405 (2021), arXiv: 2102.10832.

    Article  ADS  Google Scholar 

  82. C. Cirac, R. Jurga, M. Khalid, and F. Della Sala, Nanophotonics 8, 1182 (2019).

    Google Scholar 

  83. Q. Zhou, P. Zhang, and X. W. Chen, Phys. Rev. B 105, 125419 (2022), arXiv: 2105.06328.

    Article  ADS  Google Scholar 

  84. P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, Phys. Rev. B 88, 205308 (2013).

    Article  ADS  Google Scholar 

  85. T. Neuman, R. Esteban, D. Casanova, F. J. García-Vidal, and J. Aizpurua, Nano Lett. 18, 2358 (2018).

    Article  ADS  Google Scholar 

  86. S. Lyu, Y. Zhang, Y. Zhang, K. Chang, G. Zheng, and L. Wang, J. Phys. Chem. C 126, 11129 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Xue-Hua Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2021YFA1400800), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030329001), the Guangdong Special Support Program (Grant No. 2019JC05X397), and the Natural Science Foundation of Guangdong (Grant Nos. 2021A1515010039, and 2018A030313722). The authors thank R. Liu and X. Zeng for their helpful discussions and Editage for English language editing.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Lu, YW., Li, W. et al. Optical scattering imaging with sub-nanometer precision based on position-ultra-sensitive giant Lamb shift. Sci. China Phys. Mech. Astron. 67, 264212 (2024). https://doi.org/10.1007/s11433-023-2369-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2369-6

Navigation