Skip to main content
Log in

Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A silver nanoparticle ensemble was prepared under ultrahigh vacuum (UHV) conditions by Volmer–Weber growth on a quartz substrate for surface-enhanced Raman scattering (SERS) investigations of pyrene molecules. To tune the surface plasmon resonance frequency in the vicinity of the excitation wavelength of 488 nm of the diode laser, the morphology of the silver nanoparticles was optimized. The substrates were mounted in a flow-through cell as part of the optical Raman set-up. A microsystem diode laser generates two slightly different emission wavelengths (λ=487.61 nm and λ=487.91 nm) with a spectral width <10 pm and an optical power of 20 mW, i.e. SERS experiments are possible but also shifted excitation Raman difference spectroscopy (SERDS) can be carried out. For trace analysis of pyrene in water we demonstrate SERS/SERDS experiments which lead to a limit of detection of 2 nmol/l for pyrene. These results suggest that with silver nanoparticle ensembles excited at their plasmon resonance at 488 nm combined SERS/SERDS measurements can be effectively performed for in-situ trace analysis of pollutant chemicals in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000)

    Book  Google Scholar 

  2. L.P. Choo-Smith, H.G.M. Edwards, H.P. Endtz, J.M. Kros, F. Heule, H. Barr, J.S. Robinson, H.A. Bruining, G.J. Puppels, Biopolymers 67, 1 (2002)

    Article  Google Scholar 

  3. A. Oust, T. Moretro, K. Naterstad, G. Kowalwska, G.D. Sockalingum, I. Adt, M. Manfait, A. Kohler, Appl. Environ. Microbiol. 72, 228 (2006)

    Article  Google Scholar 

  4. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)

    Article  ADS  Google Scholar 

  5. T. Baussant, S. Sanni, A. Skadsheim, G. Jonsson, J.F. Borseth, B. Gaudebert, Environ. Toxicol. Chem. 20, 1185 (2001)

    Article  Google Scholar 

  6. G. Witt, Mar. Chem. 79, 49 (2002)

    Article  Google Scholar 

  7. H. Schmidt, N.B. Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, G. Kowalwska, Mar. Pollut. Bull. 49, 229 (2004)

    Article  Google Scholar 

  8. T. Murphy, H. Schmidt, H.-D. Kronfeldt, Appl. Phys. B 69, 147 (1999)

    Article  ADS  Google Scholar 

  9. F. Hubenthal, D. Blázques Sánchez, N. Borg, H. Schmidt, H.-D. Kronfeldt, F. Träger, Appl. Phys. B 95, 351 (2009)

    Article  ADS  Google Scholar 

  10. O. Péron, E. Rinnert, M. Lehaitre, P. Crassous, C. Compére, Talanta 79, 199 (2009)

    Article  Google Scholar 

  11. C.L. Jones, K.C. Bantz, C.L. Haynes, Anal. Bioanal. Chem. 394, 303 (2009)

    Article  Google Scholar 

  12. L. Guerrini, J.V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Anal. Chem. 81, 953 (2009)

    Article  Google Scholar 

  13. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, J. Phys., Condens. Matter 14, R597 (2002)

    Article  ADS  Google Scholar 

  14. F.J. Garcia-Vidal, J.B. Pendry, Phys. Rev. Lett. 77, 1163 (1996)

    Article  ADS  Google Scholar 

  15. H. Xu, J. Aizpura, M. Käll, P. Apell, Phys. Rev. E 62, 4318 (2000)

    Article  ADS  Google Scholar 

  16. L.G. Olson, Y.-S. Lo, T.P. Beebe, Jr., J.M. Harris, Anal. Chem. 73, 4268 (2001)

    Article  Google Scholar 

  17. H. Ouacha, C. Hendrich, F. Hubenthal, F. Träger, Appl. Phys. B 81, 663 (2005)

    Article  ADS  Google Scholar 

  18. J. Zhao, M.M. Carrabba, F.S. Allen, Appl. Spectrosc. 56, 834 (2002)

    Article  ADS  Google Scholar 

  19. M. Maiwald, H. Schmidt, B. Sumpf, R. Güther, G. Erbert, H.-D. Kronfeldt, G. Tränkle, Appl. Spectrosc. 63, 1283 (2009)

    Article  ADS  Google Scholar 

  20. F. Hubenthal, Eur. J. Phys. 30, S49 (2009)

    Article  Google Scholar 

  21. F. Hubenthal, Nobel metal nanoparticles: synthesis and optical properties, in Comprehensive Nanoscience and Technology, ed. by D.L. Andrews, G.D. Scholes, G.P. Wiederecht, vol. 1 (Academic Press, San Diego, 2011), pp. 375–435

    Chapter  Google Scholar 

  22. F. Hubenthal, N. Borg, F. Träger, Appl. Phys. B 93, 39 (2008)

    Article  ADS  Google Scholar 

  23. M. Maiwald, D. Jedrzejczyk, A. Sahm, K. Paschke, R. Güther, B. Sumpf, G. Erbert, G. Tränkle, Opt. Lett. 34, 217 (2009)

    Article  ADS  Google Scholar 

  24. H. Schmidt, D. Perez Kaiser, M. Maiwald, Method for generating and for detecting a Raman spectrum. International patent, WO 2011/033017 A1 (2011)

  25. D.M. Carey, G.M. Korenowski, J. Chem. Phys. 108, 2669 (1998)

    Article  ADS  Google Scholar 

  26. S. Nah, D. Kim, H. Chung, S.-H. Han, M.-Y. Yoon, J. Raman Spectrosc. 38, 475 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the European Community in the framework of the EU project “SENSEnet” under the contract number PITN-GA-2009-237868.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-D. Kronfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ossig, R., Kwon, YH., Hubenthal, F. et al. Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS. Appl. Phys. B 106, 835–839 (2012). https://doi.org/10.1007/s00340-011-4866-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4866-8

Keywords

Navigation