Skip to main content
Log in

Time-resolved fluorescence polarization anisotropy of multimodal samples: the asphaltene case

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work we describe an application of the time-resolved fluorescence polarization anisotropy (TRFPA) technique to the analysis of asphaltenes, complex mixtures of high-molecular weight compounds, typically present in petroleum oils. Our asphaltene samples consist of nanometer-sized polydispersed particles, whose lighter fraction showed a relatively high fluorescence quantum yield. Most of the fluorescence intensity observed from the complex sample originated from a well defined sample fraction presenting a large fluorescence yield. Consequently, the TRFPA analysis only provided the average size of more fluorescing particles, that, in our case, were the smaller ones. Larger and less fluorescing aggregates did not significantly contribute to the TRFPA signal. Hence, to overcome intrinsic limitations of the TRFPA technique in characterizing multimodal samples, we preliminarily fractionated our complex samples by means of size exclusion chromatography (SEC), thus obtaining nearly monomodal fractions of the original samples. This procedure allowed to estimate also the size of less fluorescing and larger particles. A comparison of particle size estimate by means of TRFPA and SEC methods was also used to acquire information about occurrence of aggregation phenomena, and about the kind and strength of the chemical bonds linking chromophores to each other or to their parent particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publisher, New York, 2002)

    Google Scholar 

  2. V. Bruckner, K.H. Feller, U.W. Grummt, Application of Time-Resolved Optical Spectroscopy (Elsevier, Amsterdam, 1990)

    Google Scholar 

  3. J.R. Lakowicz, Topics in Fluorescence Spectroscopy (Plenum Press, New York, 1981)

    Google Scholar 

  4. M. Alfè, B. Apicella, R. Barbella, A. Tregrossi, A. Ciajolo, Energy Fuels 21, 136 (2007)

    Google Scholar 

  5. B. Apicella, R. Barbella, A. Ciajolo, A. Tregrossi, Chemosphere 51, 1063 (2003)

    Article  Google Scholar 

  6. A.L. Lafleur, Y. Nakagawa, Fuel 68, 741 (1989)

    Article  Google Scholar 

  7. A.A. Herod, M.-J. Lazaro, I. Suelves, C. Dubau, R. Richaud, J. Shearman, J. Card, A.R. Jones, M. Domin, R. Kandiyoti, Energy Fuels 14, 1009 (2000)

    Google Scholar 

  8. M. Barcellona, E. Gratton, Biophys. J. 70, 2341 (1996)

    Article  ADS  Google Scholar 

  9. F. Olivini, S. Beretta, G. Chirico, Appl. Spectrosc. 55, 311 (2001)

    Article  ADS  Google Scholar 

  10. C.D. Geddes, J. Karolin, D.J.S. Birch, J. Phys. Chem. B 106, 3835 (2002)

    Article  Google Scholar 

  11. A. Bruno, C. de Lisio, P. Minutolo, Opt. Express 13, 5393 (2005)

    Article  ADS  Google Scholar 

  12. L. Bucha, H. Groenzin, H. Buenrostro-Gonzalez, S.I. Andersen, C. Lira-Galeanac, O.C. Mullins, Fuel 15, 972 (2003)

    Google Scholar 

  13. O.P. Strausz, P. Peng, J. Murgich, Energy Fuels 16, 809 (2002)

    Google Scholar 

  14. B.E. Ascanius, D.M. Garcia, S.I. Andersen, Energy Fuels 18, 1827 (2004)

    Google Scholar 

  15. S. Badre, C.C. Goncalves, K. Norinaga, G. Gustavson, O.C. Mullins, Fuel 85, 1 (2006)

    Article  Google Scholar 

  16. O.C. Mullins, E.Y. Sheu, Structures and Dynamics of Asphaltenes (Plenum Press, New York, 1998)

    Google Scholar 

  17. Y.C. Liu, E.Y. Sheu, S.H. Chent, Fuel 74, 1352 (1995)

    Article  Google Scholar 

  18. J.G. Speight, Oil Gas Sci. Technol. 59, 467 (2004)

    Google Scholar 

  19. A. Sharma, H. Groenzin, A. Tomita, O.C. Mullins, Energy Fuels 16, 490 (2002)

    Google Scholar 

  20. S.I. Andersen, E.H. Stenby, Fuel Sci. Technol. Int. 14, 261 (1996)

    Google Scholar 

  21. Y. Xu, K. Yoshikata, O.P. Strausz, Fuel 74, 960 (1995)

    Article  Google Scholar 

  22. H. Groenzin, O.C. Mullins, J. Phys. Chem. A 103, 11237 (1999)

    Article  Google Scholar 

  23. S. Roussis, R. Proulx, Rapid Commun. Mass Spectrosc. 18, 1761 (2004)

    Google Scholar 

  24. ASTM Standard D2007-80 (ASTM International, West Conshohocken, 2007), http://www.astm.org, accessed 2007

  25. British Standard BS 4696, 1971-IP 143/78

  26. A. Bruno, C. de Lisio, P. Minutolo, A. D’Alessio, to appear in Combust. Flame (2007), DOI: 10.1016/j.combustionflame2007.06.014

  27. A. Bruno, M. Alfè, B. Apicella, P. Minutolo, C. de Lisio, Opt. Lasers Eng. 44, 732 (2006)

    Article  Google Scholar 

  28. I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd edn. (Academic Press, New York, 1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bruno.

Additional information

PACS

82.53.Uv; 82.80.Bg; 47.57.E-

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, A., Alfè, M., Ciajolo, A. et al. Time-resolved fluorescence polarization anisotropy of multimodal samples: the asphaltene case. Appl. Phys. B 90, 61–67 (2008). https://doi.org/10.1007/s00340-007-2819-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2819-z

Keywords

Navigation