Skip to main content
Log in

Single-metal-cluster local imaging: polarized scattered electric field calculation compared to the field’s modulus and phase observed in the optical near-field

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Simultaneous topographical and near-field optical imaging have been performed on single gold particles of diameters close to 12 nm. The optical source is a linearly polarized laser diode operating at λ=780 nm away from the plasmon resonance of the particles. The experimental optical image is recorded with an apertureless scanning near-field optical microscope (ASNOM) operating in transmission mode. It is compared to the components of the polarized scattered electric field around a single cluster calculated using Mie formalism. We show that the tip used in the experiments is sensitive to the axial component of the scattered field, thus allowing us to obtain the amplitude and the phase of the local field. Our derivation brings out new information, usually shaded when applied to an ensemble of particles. In particular, the dipole model widely used to describe the scattered field by a spherical particle is not suitable to describe the three components of the scattered field in the near zone. Our results are of interest for fundamental studies of the optical properties of single metal clusters and the control of local phenomena such as enhancement, extinction, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Faraday, Philos. Trans. R. Soc. London 147, 145 (1857)

    Article  ADS  Google Scholar 

  2. C.G. Granqvist, O. Hunderi, Phys. Rev. B 16, 3513 (1977)

    Article  ADS  Google Scholar 

  3. J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Perelta-Videa, H.E. Troiani, P. Santiago, M.S. Yacaman, Nano Lett. 2, 397 (2002)

    Article  ADS  Google Scholar 

  4. S.S. Shankar, A. Ahmad, R. Pasricha, M. Satry, J. Mater. Chem. 13, 1822 (2003)

    Article  Google Scholar 

  5. L. Cognet, C. Tardin, D. Boyert, D. Choquet, P. Tamarat, B. Lounis, Proc. Nat. Acad. Sci. 100, 11350 (2003)

    Article  PubMed  ADS  Google Scholar 

  6. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  7. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)

    Article  ADS  Google Scholar 

  8. K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, Phys. Rev. Lett. 93, 037401 (2004)

    Article  PubMed  ADS  Google Scholar 

  9. A. Arbouet, D. Christofilos, N. DelFatti, F. Vallée, J.R. Huntzinger, L. Arnaud, P. Billaud, M. Broyer, Phys. Rev. Lett. 93, 127401 (2004)

    Article  PubMed  ADS  Google Scholar 

  10. S. Berciaud, L. Cognet, G.A. Blab, B. Lounis, Phys. Rev. Lett. 93, 257402 (2004)

    Article  PubMed  ADS  Google Scholar 

  11. Proc. 8th Int. Conf. on Near-field Nano Optics and Related Techniques, Vol. 9, Section A, 2004, City Publishing House, Wonho Jhe Ed.

  12. D. Courjon, C. Bainier (Eds.), Le champ proche optique. Theorie et applications (Springer, Paris, 2001)

    Google Scholar 

  13. C.J. Hill, P.M. Bridger, G.S. Picus, T.C. McGill, Appl. Phys. Lett. 75, 4022 (1999)

    Article  ADS  Google Scholar 

  14. M.B. Raschke, C. Lienau, Appl. Phys. Lett. 83, 5089 (2003)

    Article  ADS  Google Scholar 

  15. G.C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, R. Kersting, Semicond. Sci. Technol. 20, S286 (2005)

    Article  Google Scholar 

  16. A. Roberts, J. Appl. Phys. 70, 4045 (1991)

    Article  ADS  Google Scholar 

  17. H. Cory, A.C. Boccara, J.C. Rivoal, A. Lahrech, Microwave Opt. Technol. Lett. 18, 120 (1998)

    Article  Google Scholar 

  18. L. Novotny, E.J. Sanchez, X.S. Xie, Ultramicroscopy 71, 21 (1998)

    Article  Google Scholar 

  19. E.J. Sanchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999)

    Article  ADS  Google Scholar 

  20. S. Ducourtieux, S. Gresillon, J.C. Rivoal, C. Vannier, C. Bainier, D. Courjon, H. Cory, Eur. Phys. J. Appl. Phys. 26, 35 (2004)

    Article  ADS  Google Scholar 

  21. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  Google Scholar 

  22. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)

    Book  Google Scholar 

  23. S. Ducourtieux, Ph. D. Thesis, University Pierre et Marie Curie (Paris 6) (2001)

  24. S. Gresillon, H. Cory, J.C. Rivoal, A.C. Boccara, J. Opt. A 1, 178 (1999)

    Article  ADS  Google Scholar 

  25. E. Betzig, J.K. Trautman, J.S. Weiner, T.D. Harris, R. Wolfe, Appl. Opt. 31, 4563 (1992)

    Article  ADS  Google Scholar 

  26. S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, P. Royer, J. Opt. Soc. Am. B 20, 2117 (2003)

    Article  ADS  Google Scholar 

  27. C. Matzler, MATLAB functions for Mie scattering and absorption, 2002, Institut für Angewandte Physik, University of Bern – CH

  28. D.W. Lynch, W.R. Hunter, E.D. Palik (Eds.) Handbook of Optical Constants of Solids (Academic Press, London, 1998)

  29. R. Hillenbrand, F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000)

    Article  PubMed  ADS  Google Scholar 

  30. J.A. Porto, R. Carminati, J.-J. Greffet, J. Appl. Phys. 88, 4845 (2000)

    Article  ADS  Google Scholar 

  31. L. Aigouy, F.X. Andreani, A.C. Boccara, J.C. Rivoal, J.A. Porto, R. Carminati, J.J. Greffet, R. Megy, Appl. Phys. Lett. 76, 397 (2000)

    Article  ADS  Google Scholar 

  32. C. Bainier, C. Vannier, D. Courjon, J.C. Rivoal, S. Ducourtieux, Y. deWilde, L. Aigouy, F. Formanek, L. Belliard, P. Siry, B. Perrin, Appl. Opt. 42, 691 (2003)

    Article  PubMed  ADS  Google Scholar 

  33. R. Hillenbrand, F. Keilmann, Appl. Phys. Lett. 80, 25 (2002)

    Article  ADS  Google Scholar 

  34. L. Aigouy, V. Mathet, P. Beauvillain, Opt. Comm., in press, DOI: 10.1016/j.optcom.2005.12.053

  35. N. Anderson, A. Bouhelier, L. Novotny, J. Opt A 8, S227 (2006)

    Article  ADS  Google Scholar 

  36. A. Fragola, L. Aigouy, P.Y. Mignotte, F. Formanek, Y. DeWilde, Ultramicroscopy 101, 47 (2004)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Grésillon.

Additional information

PACS

07.79.Fc; 78.67.Bf; 78.35.+c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grésillon, S., Lecaque, R., Williame, L. et al. Single-metal-cluster local imaging: polarized scattered electric field calculation compared to the field’s modulus and phase observed in the optical near-field. Appl. Phys. B 84, 167–173 (2006). https://doi.org/10.1007/s00340-006-2232-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2232-z

Navigation