Skip to main content
Log in

Antibacterial and solar-driven photocatalytic activities of CoxSn1−xO2−δ nanoparticles for wastewater treatment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Transition metal doped nanoparticles have potential for photodegradation, antibacterial activity, and water splitting. Co-doped SnO2 nanoparticles (CoxSn1−xO2−δ: x = 0–7%) with an average diameter of ≈ 32 nm are successfully synthesized using the coprecipitation method. The structural properties are investigated using an X-ray diffractometer (XRD) that shows tetragonal structure of the nanoparticles. Microstrain and average crystallite size of the nanoparticles are investigated using different XRD models. It is observed that 7% Co-doping reduces the optical bandgap down to 17% (3.04 eV). The nanoparticles show 75% photodegradation of methylene blue dye under sunlight exposure, and enhance antibacterial activity against both gram-positive and gram-negative bacteria. These results may provide pathways to utilize CoxSn1−xO2−δ nanoparticles as efficient photocatalysts, antibacterial agents for industrial wastewater treatment, and water-splitting applications as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data are available on a reasonable request.

References

  1. N. Dwivedi, S. Dwivedi, C.O. Adetunji, Microbial Rejuvenation of Polluted Environment (Springer, Singapore, 2021), pp.325–358

    Google Scholar 

  2. S. Garg, Z.Z. Chowdhury, A.N.M. Faisal, N.P. Rumjit, P. Thomas, Impact of industrial wastewater on environment and human health, in Advanced Industrial Wastewater Treatment and Reclamation of Water: Comparative Study of Water Pollution Index During Pre-industrial, Industrial Period and Prospect of Wastewater Treatment for Water Resource Conservation. (Springer, Cham, 2022), pp.197–209

    Google Scholar 

  3. S. Mishra, J.K. Nayak, A. Maiti, Clean Technol. Environ. Policy 22, 651 (2020)

    CAS  Google Scholar 

  4. A.R. Varela, C.M. Manaia, Environ. Sci. Pollut. Res. 20, 3550 (2013)

    CAS  Google Scholar 

  5. S. Imtiazuddin, M. Mumtaz, K.A. Mallick, J. Basic Appl. Sci. 8, 554 (2012)

    CAS  Google Scholar 

  6. L. Bilińska, M. Gmurek, S. Ledakowicz, Process Saf. Environ. 109, 420 (2017)

    Google Scholar 

  7. R. Christie, Environmental Aspects of Textile Dyeing (Elsevier, Amsterdam, 2007)

    Google Scholar 

  8. D.C. da Silva Alves, B.S. de Farias, C. Breslin, L.A. de Almeida Pinto, T.R.S.A.C. Junior, Carbon nanotube-based materials for environmental remediation processes, in Advanced Materials for Sustainable Environmental Remediation. (Elsevier, Amsterdam, 2022), pp.475–513

    Google Scholar 

  9. C. Sushma, S. Girish Kumar, Advancements in the zinc oxide nanomaterials for efficient photocatalysis. Chem. Pap. 71, 2023 (2017)

    CAS  Google Scholar 

  10. Y. Liu, Z. Li, M. Green, M. Just, Y.Y. Li, X. Chen, J. Phys. D: Appl. Phys. 50, 193003 (2017)

    ADS  Google Scholar 

  11. K. Anandan, K. Rajesh, K. Gayathri, S.V. Sharma, S.M. Hussain, V. Rajendran, Phys. E: Low-Dimens. Syst. Nanostruct. 124, 114342 (2020)

    CAS  Google Scholar 

  12. A. Muthuvel, M. Jothibas, C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnol. Environ. Eng. 5, 1 (2020)

    Google Scholar 

  13. A.K. Singh, A. Ahlawat, T.K. Dhiman, G. Lakshmi, P.R. Solanki, Degradation of methyl parathion using manganese oxide (MnO2) nanoparticles through photocatalysis. SPAST Abstr. 1, (2021)

  14. S. Arif, S. Saleem, G. Murtaza, R. Ayub, A. Mahmood, M.S. Anwar, Opt. Mater. 129, 112521 (2022)

    CAS  Google Scholar 

  15. A. Pugazhendhi, R. Prabhu, K. Muruganantham, R. Shanmuganathan, S. Natarajan, J. Photochem. Photobiol. B: Biol. 190, 86 (2019)

    CAS  Google Scholar 

  16. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, Mater. Res. Express. 6, 0850i0853 (2019)

    Google Scholar 

  17. M. Aziz, S.S. Abbas, W.R.W. Baharom, Mater. Lett. 91, 31 (2013)

    CAS  Google Scholar 

  18. K. Nemeth, Z. Pallai, B. Reti, P. Berki, Z. Nemeth, K. Hernadi, J. Nanosci. Nanotechnol. 19, 492 (2019)

    CAS  PubMed  Google Scholar 

  19. C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, RSC Adv. 3, 16728 (2013)

    ADS  CAS  Google Scholar 

  20. A.A. Firooz, A.R. Mahjoub, A.A. Khodadadi, Mater. Lett. 62, 1789 (2008)

    CAS  Google Scholar 

  21. M.-M. Bagheri-Mohagheghi, N. Shahtahmasebi, M. Alinejad, A. Youssefi, M. Shokooh-Saremi, Physica B: Condens. Matter. 403, 2431 (2008)

    ADS  CAS  Google Scholar 

  22. F. Costantino, A. Armirotti, R. Carzino, L. Gavioli, A. Athanassiou, D. Fragouli, J. Photochem. Photobiol. A. 398, 112599 (2020)

    CAS  Google Scholar 

  23. H. Letifi, D. Dridi, Y. Litaiem, S. Ammar, W. Dimassi, R. Chtourou, Catal. 11, 803 (2021)

    CAS  Google Scholar 

  24. A.B. Ali Baig, V. Rathinam, V. Ramya, Mater. Technol. 36, 623 (2021)

    ADS  CAS  Google Scholar 

  25. S.K. Jain, M. Fazil, F. Naaz, N.A. Pandit, J. Ahmed, S.M. Alshehri, Y. Mao, T. Ahmad, New J. Chem. 46, 2846 (2022)

    CAS  Google Scholar 

  26. A. Podurets, M. Khalidova, L. Chistyakova, N. Bobrysheva, M. Osmolowsky, M. Voznesenskiy, O. Osmolovskaya, J. Alloys Compd. 926, 166950 (2022)

    CAS  Google Scholar 

  27. C.V. Reddy, B. Babu, J. Shim, Mater. Sci. Eng. B 223, 131 (2017)

    CAS  Google Scholar 

  28. N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi, S. Ragupathy, Appl. Surf. Sci. 360, 283 (2016)

    ADS  CAS  Google Scholar 

  29. S. Lehner, N. Newman, M. Van Schilfgaarde, S. Bandyopadhyay, K. Savage, P. Buseck, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4706558

    Article  Google Scholar 

  30. M. Tang, J. Shang, Y. Zhang, RSC Adv. 8, 640 (2018)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. Rajeswaran, M. Shanmuganathan, A. Elavarasan, P. Sivakarthik, Mater. Today Proc. 80, 634 (2023)

    CAS  Google Scholar 

  32. B. Babu, A. Kadam, R. Ravikumar, C. Byon, J. Alloys Compd. 703, 330 (2017)

    CAS  Google Scholar 

  33. S. Asaithambi, P. Sakthivel, M. Karuppaiah, R. Murugan, R. Yuvakkumar, G. Ravi, J. Electron. Mater. 48, 2183 (2019)

    ADS  CAS  Google Scholar 

  34. K. Sathishkumar, S. Ragupathy, M. Karunanithi, M. Krishnakumar, D. Mani, Y.-H. Ahn, Inorg. Chem. Commun. 145, 110031 (2022)

    CAS  Google Scholar 

  35. T. Entradas, J. Cabrita, S. Dalui, M. Nunes, O. Monteiro, A.J. Silvestre, Mater. Chem. Phys. 147, 563 (2014)

    CAS  Google Scholar 

  36. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    CAS  Google Scholar 

  37. S. Arif, N. Bano, M. Riaz, M. Anwar, Mater. Chem. Phys. 281, 125873 (2022)

    CAS  Google Scholar 

  38. R. Das, S. Sarkar, Curr. Sci. 109, 775 (2015)

    Google Scholar 

  39. D. Balzar, H. Ledbetter, J. Appl. Crystallogr. 26, 97 (1993)

    ADS  Google Scholar 

  40. R. Delhez, T.H. Keijser, E. Mittemeijer, Fresenius’ J. Anal. Chem. 312, 1 (1982)

    CAS  Google Scholar 

  41. V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 1 (2012)

    Google Scholar 

  42. E. Chang, E. Graham, J. Geophys. Res. 80, 2595 (1975)

    ADS  CAS  Google Scholar 

  43. P. Muhammed Shafi, A. Chandra Bose, AIP Adv. (2015). https://doi.org/10.1063/1.4921452

    Article  Google Scholar 

  44. X. Xu, X. Wang, Nano Res. 2, 891 (2009)

    CAS  Google Scholar 

  45. T. Krishnakumar, R. Jayaprakash, N. Pinna, A. Phani, M. Passacantando, S. Santucci, J. Phys. Chem. Solids 70, 993 (2009)

    ADS  CAS  Google Scholar 

  46. M.M. Obeid, S.J. Edrees, M.M. Shukur, Superlattices Microstruct. 122, 124 (2018)

    ADS  CAS  Google Scholar 

  47. D. Chandran, L.S. Nair, S. Balachandran, K. RajendraBabu, M. Deepa, J. Solgel Sci. Technol. 76, 582 (2015)

    CAS  Google Scholar 

  48. B.P. Narasaiah, P. Banoth, A. Sohan, B.K. Mandal, A.G. Bustamante Dominguez, L. De Los Santos Valladares, P. Kollu, ACS Omega 7, 15423 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Li, W. Wu, P. Dai, L. Zhang, Z. Sun, G. Li, M. Wu, X. Chen, C. Chen, RSC Adv. 4, 23831 (2014)

    ADS  CAS  Google Scholar 

  50. A. Kumar, G. Pandey, Mater. Sci. Eng. Int. J. 1(3), 1 (2017)

    MathSciNet  CAS  Google Scholar 

  51. V. Kuzhalosai, B. Subash, A. Senthilraja, P. Dhatshanamurthi, M. Shanthi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 876 (2013)

    ADS  CAS  PubMed  Google Scholar 

  52. Z. Nasir, M. Shakir, R. Wahab, M. Shoeb, P. Alam, R.H. Khan, M. Mobin, Int. J. Biol. Macromol. 94, 554 (2017)

    CAS  PubMed  Google Scholar 

  53. N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 035004 (2008)

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SA: conceptualization, formal analysis, data curation, writing original draft—review and editing, DK: experimentation and investigation, KS: investigation, resources, AS: formal analysis, MSA: conceptualization, formal analysis, writing—review and editing.

Corresponding authors

Correspondence to Shafaq Arif or M. S. Anwar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Young’s modulus of a tetragonal structure can be determined using following expression [33].

$$\frac{1}{{E_{hkl} }} = \frac{{s_{11} \left( {h^{2} + k^{2} } \right) + l^{2} \left( {2s_{13} + s_{44} } \right)}}{{\left( {h^{2} + k^{2} + l^{2} } \right)}} + \frac{{l^{4} \left( {s_{33} - 2s_{13} - s_{44} } \right) + h^{2} k^{2} \left( {2s_{12} + s_{66} } \right)}}{{\left( {h^{2} + k^{2} + l^{2} } \right)^{2} }},$$
(14)

where S11, S 12, S13, S33, S 44, S66 are the elastic compliances of the tetragonal structure of CoxSn1−xO2δ nanoparticles (sij in TPa−1) that are calculated from the constants of elastic stiffness c11, c12, c13, c33, c44, c66 (cij in GPa) using following relations

$$s_{11} = \frac{{c_{33} }}{2c} + \frac{1}{{2\left( {c_{11} - c_{12} } \right)}},$$
(15)
$$s_{12} = \frac{{c_{33} }}{2c} - \frac{1}{{2\left( {c_{11} - c_{12} } \right)}},$$
(16)
$$s_{13} = - \frac{{c_{13} }}{c},$$
(17)
$$s_{33} = \frac{{\left( {c_{11} + c_{12} } \right)}}{c},$$
(18)
$$s_{44} = \frac{1}{{c_{44} }},$$
(19)
$$s_{66} = \frac{1}{{c_{66} }},$$
(20)
$$c \, = \left( {c_{11} + c_{12} } \right)c_{33} {-} \, 2c_{13}^{2} .$$
(21)

Considering the values of elastic stiffness constants the values of elastic compliances S11, S 12, S13, S33, S44, S66 are taken as 7.426, − 4.408, 1.0438, 2.946, 9.7, 4.8216, respectively [33, 34].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, S., Durr-e-Kashaf, Shahzadi, K. et al. Antibacterial and solar-driven photocatalytic activities of CoxSn1−xO2−δ nanoparticles for wastewater treatment. Appl. Phys. A 130, 208 (2024). https://doi.org/10.1007/s00339-024-07370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07370-5

Keywords

Navigation