Skip to main content
Log in

Effect of aluminum substitution on physical–chemical properties of novel iron-sillenite Bi25Fe(1−x)AlxO40 (x = 0.00, 0.20, 0.50)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Novel Sillenites Bi25Fe(1−x)AlxO40 (x = 0.00, 0.20, and x = 0.50) have been synthesized using the SSR method. In this paper, the effect of Al-substitution on the physicochemical properties was performed. The X-ray diffraction analysis as well as both Raman and FT-IR spectroscopies indicate that all the elaborated materials have a bcc structure with the I23 space group. The increase of the cell parameters, the morphological features, and thus the decrease of the grain size with Aluminum content is also evidenced via the X-ray patterns and SEM microscopy. DSC measurements highlighted the occurrence of various phenomena related to both structural and dielectric features. The temperature dependence of electrical conductivity and the deduced activation energies pointed to the effect of temperature on the conduction process. The impedance analysis on the samples confirms the onset of relaxation phenomenon in the sample with semiconducting behavior. Furthermore, an AFM-Paramagnetic transition for x = 0.00 and 0.20, with Neel temperatures of 268 and 265 K, respectively. Otherwise, paramagnetic behavior is observed for x = 0.50. The optical measurements make these materials suitable candidates for photocatalysis and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. D.S. Vavilapalli, A.A. Melvin, F. Bellarmine, R. Mannam, S. Velaga, H.K. Poswal et al., Growth of sillenite Bi12FeO20 single crystals: structural, thermal, optical, photocatalytic features and first principle calculations. Sci. Rep. 10, 22052 (2020)

    ADS  PubMed  PubMed Central  Google Scholar 

  2. S.M. Shandarov, A.O. Zlobin, A.A. Shmidt, N.I. Burimov et al., Determination of material parameters of photorefractive crystals using adaptive holographic interferometry. Opt. Spectrosc. 129, 576–580 (2021)

    ADS  Google Scholar 

  3. T. Jiang, Y. Wang, Z. Guo, H. Luo, C. Zhang, Y. Wang et al., Bi25FeO40/Bi2O2CO3 piezoelectric catalyst with built-in electric fields that was prepared via photochemical self-etching of Bi25FeO40 for 4-chlorophenol degradation. J. Clean. Prod. 341, 130908 (2022)

    Google Scholar 

  4. C. Y. Zhang, H. J. Sun, W. Chen, J. Zhou, B. Li, Y. B. Wang, Hydrothermal synthesis and photo-catalytic property of Bi25FeO40 powders, in 2009 18th IEEE International Symposium on the Applications of Ferroelectrics (IEEE, Xian, 2009), p. 1–3

  5. X. Xing, L. Du, D. Feng, C. Wang, M. Yao, X. Huang et al., Individual gas sensor detecting dual exhaled biomarkers via a temperature modulated n/p semiconducting transition. J. Mater. Chem. A 8(48), 26004–26012 (2020)

    Google Scholar 

  6. M. Gao, D. Zhu, X. Zhang, Y. Liu, X. Gao, X. Zhou et al., In situ studies of 30% li-doped Bi25FeO40 conversion type lithium battery electrodes. ACS Omega 4, 2344–2352 (2019)

    PubMed  PubMed Central  Google Scholar 

  7. Y. Zhang, S. Cao, C. Liang, J. Shen, Y. Chen, Y. Feng et al., Electrocatalytic performance of Sb-modified Bi25FeO40 for nitrogen fixation. J. Colloid Interface Sci. 593, 335–344 (2021)

    ADS  PubMed  Google Scholar 

  8. A.M. Kumar, V. Ragavendran, J. Mayandi, K. Ramachandran, K. Jayakumar, Phase dependent electrochemical characteristics of bismuth ferrite: a bifunctional electrocatalyst for supercapacitors and dye-sensitized solar cells. Colloids Surf. A 656, 130529 (2023)

    Google Scholar 

  9. A. Muthu Kumar, V. Ragavendran, J. Mayandi, K. Ramachandran, K. Jayakumar, Influence of PVP on Bi25FeO40 microcubes for supercapacitors and dye-sensitized solar cells applications. J. Mater. Sci. Mater. Electron. 33, 9512–9524 (2022)

    Google Scholar 

  10. M.A. Basith, R. Ahsan, I. Zarin, M.A. Jalil, Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Sci. Rep. 8, 11090 (2018)

    ADS  PubMed  PubMed Central  Google Scholar 

  11. M. Lv, H. Yang, Y. Xu, Q. Chen, X. Liu, F. Wei, Improving the visible light photocatalytic activities of Bi25FeO40/MIL-101/PTH via polythiophene wrapping. J. Environ. Chem. Eng. 3, 1003–1008 (2015)

    Google Scholar 

  12. X. Li, Y. Qiu, Z. Zhu, H. Zhang, D. Yin, Novel recyclable Z-scheme g-C3N4/carbon nanotubes/Bi25FeO40 heterostructure with enhanced visible-light photocatalytic performance towards tetracycline degradation. Chem. Eng. J. 429, 132130 (2022)

    Google Scholar 

  13. Y. Wu, Y. Chen, S. Huang, G. Li, S. Sun, Y. Jinag et al., Comparison of bismuth ferrites for chloride removal: removal efficiency, stability, and structure. Appl. Surf. Sci. 576, 151804 (2022)

    Google Scholar 

  14. F. Li, J. Zhou, G. Gao, H. Qiu, Y. Gong, J. Gao et al., A green method to prepare magnetically recyclable Bi/Bi25FeO40-C nanocomposites for photocatalytic hydrogen generation. Appl. Surf. Sci. 521, 146342 (2020)

    Google Scholar 

  15. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, in Nanoscience and Technology (Co-Published with Macmillan Publishers Ltd, 2009), p. 337–346

  16. J. Li, J. Song, J. Chen, S. Yu, D. Jin, J. Cheng, PVA(polyvincyl acohol)-assisted hydrothermal preparation of Bi25FeO40 and its photocatalytic activity. MRS Online Proc. Libr. 1217, 322 (2010)

    Google Scholar 

  17. M.K. Verma, A. Kumar, L. Singh, R.K. Sonwani, T. Das, S. Sing et al., Bi25FeO40 polycrystalline ceramic as highly efficient photocatalyst synthesised via economical chemical route. Mater. Technol. 35, 483–493 (2020)

    ADS  Google Scholar 

  18. A. Sun, H. Chen, C. Song, F. Jiang, X. Wang, Y. Fu, Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv. 3, 4332 (2013)

    ADS  Google Scholar 

  19. Y. Huang, X. Zhang, G. Zhu, Y. Gao, Q. Cheng, X. Cheng, Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism. Sep. Purif. Technol. 215, 490–499 (2019)

    Google Scholar 

  20. R. Köferstein, T. Buttlar, S.G. Ebbinghaus, Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J. Solid State Chem. 217, 50–56 (2014)

    ADS  Google Scholar 

  21. S. Kalikeri, V. Shetty Kodialbail, Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO3/Bi25FeO40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis. Environ. Sci. Pollut. Res. 25, 13881–13893 (2018)

    Google Scholar 

  22. L. Wu, C. Dong, H. Chen, J. Yao, C. Jiang, D. Xue, Hydrothermal synthesis and magnetic properties of bismuth ferrites nanocrystals with various morphology. J. Am. Ceram. Soc. 95, 3922–3927 (2012)

    Google Scholar 

  23. M.M. de Góis, W. de Paiva Araújo, R.B. da Silva, G.E. da Luz, J.M. Soares, Bi25FeO40−Fe3O4−Fe2O3 composites: synthesis, structural characterization, magnetic and UV–visible photocatalytic properties. J. Alloys Compd. 785, 598–602 (2019)

    Google Scholar 

  24. L. Ren, S.Y. Lu, J.Z. Fang, Y. Wu, D.Z. Chen, L.Y. Huang et al., Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst. Catal. Today 281, 656–661 (2017)

    Google Scholar 

  25. F. Oudich, N. David, S. Mathieu, M. Vilasi, Phase equilibria investigations and thermodynamic modeling of the system Bi2O3–Al2O3. J. Nucl. Mater. 457, 72–79 (2015)

    ADS  Google Scholar 

  26. D.C. Craig, N.C. Stephenson, Structural studies of some body-centered cubic phases of mixed oxides involving Bi2O3: the structures of Bi25FeO40 and Bi38ZnO60. J. Solid State Chem. 15, 1–8 (1975)

    ADS  Google Scholar 

  27. M. Devalette, J. Darriet, M. Couzi, C. Mazeau, P. Hagenmuller, Caracterisation physique de l’environnement tetraedrique des cations A et B dans les phases de structure sillenite. J. Solid State Chem. 43, 45–50 (1982)

    ADS  Google Scholar 

  28. C.E. Infante, B. Carrasco, Stoichiometry and oxygen structure of Fe sillenite. Mater. Lett. 4, 194–197 (1986)

    Google Scholar 

  29. H. Jebari, N. Tahiri, M. Boujnah, O. El Bounagui, L. Boudad, M. Taibi et al., Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40. Appl. Phys. A 128, 842 (2022)

    ADS  Google Scholar 

  30. J. Lu, L.J. Qiao, P.Z. Fu, Y.C. Wu, Phase equilibrium of Bi2O3–Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal. J. Cryst. Growth 318, 936–941 (2011)

    ADS  Google Scholar 

  31. H.A. Harwig, A.G. Gerards, Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. J. Solid State Chem. 26, 265–274 (1978)

    ADS  Google Scholar 

  32. Y. Bai, J. Chen, X. Wu, S. Zhao, Photovoltaic behaviors regulated by band-gap and bipolar electrical cycling in holmium-doped Bi5Ti3FeO15 ferroelectric films. J. Phys. Chem. C 120, 24637–24645 (2016)

    Google Scholar 

  33. Y. Bai, J. Chen, R. Tian, S. Zhao, Enhanced multiferroic and magnetoelectric properties of Ho, Mn co-doped Bi5Ti3FeO15 films. Mater. Lett. 164, 618–622 (2016)

    Google Scholar 

  34. T. Gao, X. Li, G. Wu, C. Wang, X. Wu, X. Hu et al., Growth and magneto-optical properties of Bi25FeO40 crystals with heavy Co/Fe co-doping. J. Alloys Compd. 947, 169502 (2023)

    Google Scholar 

  35. T. Tong, W. Cao, H. Zhang, J. Chen, D. Jin, J. Cheng, Controllable phase evolution of bismuth ferrite oxides by an organic additive modified hydrothermal method. Ceram. Int. 41, S106–S110 (2015)

    Google Scholar 

  36. Y. Sun, X. Xiong, Z. Xia, H. Liu, Y. Zhou, M. Luo et al., Study on visible light response and magnetism of bismuth ferrites synthesized by a low temperature hydrothermal method. Ceram. Int. 39, 4651–4656 (2013)

    Google Scholar 

  37. F.-E. N’faoui, M. Taibi, J. Aride, A. Boukhari, H. Saadaoui, M. Rouziéres, Spectroscopic, optical, magnetic and dielectric investigation of the orthoborate Ba2Co(BO3)2 nanopowder. J. Mater. Sci. Mater. Electron. 31, 16678–16687 (2020)

    Google Scholar 

  38. H. Oudghiri-Hassani, S. Rakass, F.T. Al Wadaani, K.J. Al-ghamidi, A. Omer, M. Messali et al., Synthesis, characterization and photocatalytic activity of α-Bi2O3 nanoparticles. J. Taibah Univ. Sci. 9, 508–512 (2015)

    Google Scholar 

  39. Z. Gargar, A. Zegzouti, M. Elaatmani, A. Tachafine, D. Fasquelle, A. Outzourhit et al., Structure, electrical, and dielectric properties of Ba1−xYxTi(1–x/4)O3 ceramics sintering at low temperature. J. Korean Ceram. Soc. 60, 52–61 (2023)

    Google Scholar 

  40. P. Kumar, C. Panda, M. Kar, Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3. Smart Mater. Struct. 24, 045028 (2015)

    ADS  Google Scholar 

  41. R.R. Toledo, V.R. Santoyo, C.D.M. Sánchez, M.M. Rosales, Effect of aluminum precursor on physicochemical properties of Al2O3 by hydrolysis/precipitation method. Nova Sci. 10, 83–99 (2018)

    Google Scholar 

  42. L. Boudad, M. Taibi, A. Belayachi, M. Abd-Lefdil, Sol-gel synthesis and characterization of novel double perovskites RBaFeTiO6 (R= Pr, Nd). Ceram. Int. 48, 6087–6096 (2022)

    Google Scholar 

  43. L. Zhang, X. Zhang, Y. Zou, Y.H. Xu, C.L. Pan et al., Hydrothermal synthesis, influencing factors and excellent photocatalytic performance of novel nanoparticle-assembled Bi25FeO40 tetrahedrons. CrystEngComm 17, 6527–6537 (2015)

    Google Scholar 

  44. Y. Wu, H. Luo, X. Jiang, H. Wang, J. Geng, Facile synthesis of magnetic Bi25FeO40 /rGO catalyst with efficient photocatalytic performance for phenolic compounds under visible light. RSC Adv. 5, 4905–4908 (2015)

    ADS  Google Scholar 

  45. Q. Hang, X. Zhu, J. Zhu, Z. Liu, Sillenite-type bismuth ferric nanocrystals: microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic properties. Procedia Eng. 27, 616–624 (2012)

    Google Scholar 

  46. O. Baaloudj, N. Nasrallah, R. Bouallouche, H. Kenfoud, L. Khezami, A.A. Assadi, High efficient Cefixime removal from water by the sillenite Bi12TiO20: photocatalytic mechanism and degradation pathway. J. Clean. Prod. 330, 129934 (2022)

    Google Scholar 

  47. F. Gyakwaa, T. Alatarvas, Q. Shu, M. Aula, T. Fabritius, Characterization of synthetic non-metallic inclusions consisting of TiN, Ti2O3, and oxides of Al2O3 and MgO·Al2O3 spinel using Raman spectroscopy. Metals 11, 1549 (2021)

    Google Scholar 

  48. M. Hakimi, M. Morvaridi, H.A. Hosseini, P. Alimard, Preparation, characterization, and photocatalytic activity of Bi2O3–Al2O3 nanocomposite. Polyhedron 170, 523–529 (2019)

    Google Scholar 

  49. K.C. Kao, Dielectric Phenomena in Solids (Elsevier, New York, 2004)

    Google Scholar 

  50. R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S. Dasgupta, Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3. J. Appl. Phys. 100, 033908 (2006)

    ADS  Google Scholar 

  51. D. Adler, J. Feinleib, Electrical and optical properties of narrow-band materials. Phys. Rev. B 2, 3112–3134 (1970)

    ADS  Google Scholar 

  52. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    Google Scholar 

  53. L. Boudad, M. Taibi, A. Belayachi, M. Abd-Lefdil, Dielectric relaxation, electrical conductivity and optical studies of solid-state synthesized EuCrO3. J. Mater. Sci. Mater. Electron. 31, 354–360 (2020)

    Google Scholar 

  54. B. Rabi, M. Ounacer, L. Bouda, A. Essoumhi, M. Sajieddine, M. Taibi et al., Structural, optical and dielectric properties of nickel zinc spinel ferrites synthesized by co-precipitation method. J. Mater. Sci. Mater. Electron. 32, 932–943 (2021)

    Google Scholar 

  55. L. Boudad, M. Taibi, A. Belayachi, M. Abd-lefdil, Structural, morphological, thermal, and oxygen-vacancy-related dielectric relaxation behaviors in EuFeO3 perovskite. Mater. Today Proc. 58, 1028–1032 (2022)

    Google Scholar 

  56. L. Boudad, M. Taibi, A. Belayachi, M. Abd-lefdil, Structural, morphological, dielectric and optical properties of double perovskites RBaFeTiO6 (R = La, Eu). RSC Adv. 11, 40205–40215 (2021)

    ADS  PubMed  PubMed Central  Google Scholar 

  57. M. Taheri, F.S. Razavi, Z. Yamani, R. Flacau, P.G. Reuvekamp, A. Schulz et al., Magnetic structure, magnetoelastic coupling, and thermal properties of EuCrO3 nanopowders. Phys. Rev. B 93, 104414 (2016)

    ADS  Google Scholar 

  58. A.A. Zatsiupa, L.A. Bashkirov, I.O. Troyanchuk, G.S. Petrov, A.I. Galyas, L.S. Lobanovsky et al., Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite. J. Solid State Chem. 212, 147–150 (2014)

    ADS  Google Scholar 

  59. L.P. Sosman, T. Abritta, M.R. Amaral, N. Cella, H. Vargas, Optical properties of LiGaTiO4: Fe3+. Solid State Commun. 105, 135–138 (1998)

    ADS  Google Scholar 

  60. Y. Liu, T. Zhang, S. Li, K. Zhang, X. Wang, Y. Zhang et al., Geometric and electronic modification of the active Fe3+ sites of α-Fe2O3 for highly efficient toluene combustion. J. Hazard. Mater. 398, 123233 (2020)

    PubMed  Google Scholar 

  61. H. Arfin, J. Kaur, T. Sheikh, S. Chakraborty, A. Nag, Bi3+-Er3+ and Bi3+-Yb 3+ codoped Cs2AgInCl6 double perovskite near-infrared emitters. Angew. Chem. Int. Ed. 59, 11307–11311 (2020)

    Google Scholar 

  62. J. Li, J. Liu, X. Yu, Synthesis and luminescence properties of Bi3+-doped YVO4 phosphors. J. Alloy. Compd. 509, 9897–9900 (2011)

    Google Scholar 

  63. K. Narasimharao, A. Al-Shehri, S. Al-Thabaiti, Porous Ag–Fe2O3 nanocomposite catalysts for the oxidation of carbon monoxide. Appl. Catal. A 505, 431–440 (2015)

    Google Scholar 

  64. J. Han et al., Redefinition of crystal structure and Bi3+ yellow luminescence with strong near-ultraviolet excitation in La3BWO9: Bi 3+ phosphor for white light-emitting diodes. ACS Appl. Mater. Interfaces 10, 13660–13668 (2018)

    PubMed  Google Scholar 

  65. T.R.N. Kutty, M. Nayak, Cationic distribution and its influence on the luminescent properties of Fe3+-doped LiAl5O8 prepared by wet chemical methods. J. Alloy. Compd. 269, 75–87 (1998)

    Google Scholar 

  66. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)

    Google Scholar 

  67. J. Tauc, Generation of an emf in semiconductors with nonequilibrium current carrier concentrations. Rev. Mod. Phys. 29, 308–324 (1957)

    ADS  Google Scholar 

  68. G.-Q. Tan, Y.-Q. Zheng, H.-Y. Miao, A. Xia, H.-J. Ren, Controllable microwave hydrothermal synthesis of bismuth ferrites and photocatalytic characterization. J. Am. Ceram. Soc. 95, 280–289 (2012)

    Google Scholar 

Download references

Acknowledgements

M. Boujnah is grateful to CONACYT for the postdoctoral fellowship.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

HJ: investigation, writing the draft, writing—review and editing, literature analysis, LB: investigation, writing—review and editing, MT: writing—review and editing; project administration, validation, MB: review and editing, AEM: review and editing, HL: review and editing, NT: review and editing, OEB: review and editing, HE: review and editing; project administration, supervision, and validation.

Corresponding authors

Correspondence to H. Jebari or M. Boujnah.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Intellectual property

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

Authorship

We attest that all authors contributed significantly to the creation of this manuscript, each having fulfilled criteria as established. We confirm that the manuscript has been read and approved by all named authors. We confirm that the order of authors listed in the manuscript has been approved by all named authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebari, H., Boudad, L., Taibi, M. et al. Effect of aluminum substitution on physical–chemical properties of novel iron-sillenite Bi25Fe(1−x)AlxO40 (x = 0.00, 0.20, 0.50). Appl. Phys. A 130, 190 (2024). https://doi.org/10.1007/s00339-024-07317-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07317-w

Keywords

Navigation