Skip to main content
Log in

Structural, Optical, and Electronic Characterization of Fe-Doped Alumina Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of iron doping on the structural, optical, and electronic properties of doped alumina have been studied. Single-phase iron-doped alumina Al2−x Fe x O3 (x = 0.00 to 0.30) nanoparticles were synthesized via citrate-precursor method. Formation of single-phase hexagonal corundum structure with no other separate phases was demonstrated by x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy. The effects of iron doping on the α-Al2O3 structural parameters, viz. atomic coordinates, lattice parameters, crystallite size, and microstrain, were estimated from XRD data by applying the Rietveld profile fitting method. Transmission electron microscopy further confirmed the nanosize nature of the prepared samples with size ranging from 12 nm to 83 nm. The electronic band structure was investigated using density functional theory calculations to explain the decrease in the energy gap of Al2−x Fe x O3 as the amount of Fe was increased. The colored emission peaks in the visible region (blue, red, violet) of the electromagnetic spectrum obtained for the Fe-doped α-Al2O3 nanoparticles suggest their potential application as ceramic nanopigments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.K. Heiba, M.B. Mohamed, and N.G. Imam, Ceram. Int. 41, 12930 (2015).

    Article  Google Scholar 

  2. A. Das and V. Shama, Adv. Mater. Lett. 7, 302 (2016).

    Article  Google Scholar 

  3. C.S. Maldonado, J.R. De la Rosa, C.J. Lucio-Ortiz, A.H. Ramírez, F.F.C. Barraza, and J.S. Valente, Materials 7, 2062 (2014).

    Article  Google Scholar 

  4. N. Yu, Q. Wen, D.R. Clarke, P.C. McIntyre, H. Kung, M. Nastasi, T. Simpson, I. Mitchell, and D. Li, J. Appl. Phys. 78, 5412 (1995).

    Article  Google Scholar 

  5. G. Rani and P.D. Sahare, Adv. Powder Technol. 25, 767 (2014).

    Article  Google Scholar 

  6. K.S. Jheeta and D.C. Jain, Afr. Phys. Rev. 1, 0006 (2007).

    Google Scholar 

  7. Y. Yang, H. Wei, L. Zhang, K. Kisslinger, C.L. Melcher, and Y. Wu, J. Lumin. 168, 297 (2015).

    Article  Google Scholar 

  8. T.P. Mokoena, E.C. Linganiso, H.C. Swart, V. Kumar, and O.M. Ntwaeaborwa, Ceram. Int. 43, 174 (2017).

    Article  Google Scholar 

  9. S. Kumar, R. Prakash, and V. Kumar, Funct. Mater. Lett. 8, 1550061 (2015).

    Article  Google Scholar 

  10. G. Rani and P.D. Sahare, Adv. Powder Technol. 25, 767 (2014).

    Article  Google Scholar 

  11. Z. Zhu, D. Liu, H. Liu, X. Wang, L. Fu, and D. Wang, Ceram. Int. 38, 4137 (2012).

    Article  Google Scholar 

  12. T. Monteiro, C. Boemare, M.J. Soares, E. Alves, C. Marques, C. McHargue, L.C. Ononye, and L.F. Allard, Nucl. Instr. Meth. Phys. Res. B 191, 638 (2002).

    Article  Google Scholar 

  13. H. Nasiri, J. Vahdati Khaki, and N. Shahtahmassebi, Mater. Des. 109, 476 (2016).

    Article  Google Scholar 

  14. Z.K. Heiba, M.B. Mohamed, and A.M. Wahba, J. Mol. Struct. 1108, 347 (2016).

    Article  Google Scholar 

  15. L. Lutterotti, MAUD, version 2.71, http://maud.radio graphema.eu/ (2016).

  16. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. Cryst. Mater. 220, 567 (2005).

    Google Scholar 

  17. J. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B: Condens. Matter 46, 6671 (1992).

    Article  Google Scholar 

  18. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  19. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  20. H. Ehrenreich and M.L. Cohen, Phys. Rev. 115, 786–794 (1959).

    Article  Google Scholar 

  21. F. Wooten, Optical Properties of Solids (New York: Academic, 1972).

    Google Scholar 

  22. G. Dufek, A. Vendl, W. Wrub, and R. Kiefer, Ber. Dt. Keram. Ges. 53, 336 (1976).

    Google Scholar 

  23. J. Tartaj and G.L. Messing, J. Eur. Ceram. Soc. 17, 719 (1997).

    Article  Google Scholar 

  24. J. Tartaj and G.L. Messing, J. Mater. Sci. Lett. 16, 168 (1997).

    Article  Google Scholar 

  25. P. Tarte, Spectrochim. Acta 123A, 2127 (1967).

    Article  Google Scholar 

  26. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  Google Scholar 

  27. I.S. Yahia, A.A.M. Farag, M. Cavas, and F. Yakuphanoglu, Superlattices Microstruct. 53, 63 (2013).

    Article  Google Scholar 

  28. C. Aydin, M.S. Abd El-Sadek, K. Zheng, I.S. Yahia, and F. Yakuphanoglu, Opt. Laser Technol. 48, 447 (2013).

    Article  Google Scholar 

  29. F. Yakuphanoglu, R. Mehrotra, A. Gupta, and M. Munoz, J. Appl. Polym. Sci. 114, 794 (2009).

    Article  Google Scholar 

  30. E. Yassitepe, Z. Khalifa, G.H. Jaari, C.-S. Chou, S. Zulfiqar, M.I. Sarwar, and S.I. Shah, Powder Technol. 201, 27 (2010).

    Article  Google Scholar 

  31. P.A. Prashanth, R.S. Raveendra, R. Hari Krishna, S. Ananda, N.P. Bhagya, B.M. Nagabhushana, K. Lingaraju, and H. Raja Naika, J. Asian Ceram. Soc. 3, 345 (2015).

    Article  Google Scholar 

  32. R. Bharthasaradhi and L.C. Nehru, Phase Transitions 89, 77 (2016).

    Article  Google Scholar 

  33. A.C. Pradhan, S. Martha, S.K. Mahanta, and K.M. Parida, Int. J. Hydrogen Energy 36, 12753 (2011).

    Article  Google Scholar 

  34. A.M. Wahba, M.B. Mohamed, and N.G. Imam, J. Magn. Magn. Mater. 408, 51 (2016).

    Article  Google Scholar 

  35. Z.K. Heiba, N.G. Imam, and M.B. Mohamed, J. Mol. Struct. 1095, 61 (2015).

    Article  Google Scholar 

  36. Z.K. Heiba, N.G. Imam, and M.B. Mohamed, J. Mol. Struct. 1115, 156 (2016).

    Article  Google Scholar 

  37. K. Tanaka, S. Nakashima, K. Fujita, and K. Hirao, J. Phys.: Condens. Matter 15, L469 (2003).

    Google Scholar 

  38. X.S. Peng, L.D. Zhang, G.W. Meng, X.F. Wang, Y.W. Wang, C.Z. Wang, and G.S. Wu, J. Phys. Chem. B 106, 11163 (2002).

    Article  Google Scholar 

  39. W. Tews and R. Gundler, Phys. Status Solidi 109, 255 (1982).

    Article  Google Scholar 

  40. R.H. French, D.J. Jones, and S. Loughin, J. Am. Ceram. Soc. 77, 412 (1994).

    Article  Google Scholar 

  41. H.A. Rahnamaye Aliabad, Chin. Phys. B 24, 097102 (2015).

    Article  Google Scholar 

  42. D.R. Penn, Phys. Rev. 128, 2093 (1962).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bakr Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Wahba, A.M. et al. Structural, Optical, and Electronic Characterization of Fe-Doped Alumina Nanoparticles. J. Electron. Mater. 47, 711–720 (2018). https://doi.org/10.1007/s11664-017-5830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5830-0

Keywords

Navigation