Skip to main content
Log in

Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The iron-sillenite Bi25FeO40 has been synthesized using the solid-state reaction route. The elaborated material crystallizes in a cubic structure. The studied material exhibits an anomaly, noticed via the DSC analysis and dielectric measurements at 671 K. This anomaly can be attributed to the occurrence of a thermally activated relaxation in the Bi25FeO40 sample. Besides, the magnetic study revealed the antiferromagnetic behaviour of γ-Bi25FeO40 sillenite, with a 240 K of Neel temperature TN, Curie constant of 9.18 10–8 m3.K/mol, resulting in a magnetic moment of 6.37 μB. Furthermore, the band gap of Bi25FeO40 is about 2.02 eV and the magnetic behavior makes it an appropriate candidate as a photocatalyst for water and/or wastewater treatment, and degradation of pollutants, that can be simply recycled by magnetic separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Köferstein, T. Buttlar, S.G. Ebbinghaus, Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J. Solid State Chem. 217, 50–56 (2014)

    Article  ADS  Google Scholar 

  2. T. Tong, W. Cao, H. Zhang, J. Chen, D. Jin, J. Cheng, Controllable phase evolution of bismuth ferrite oxides by an organic additive modified hydrothermal method. Ceram. Int. 41, S106–S110 (2015)

    Article  Google Scholar 

  3. L. Wu, C. Dong, H. Chen, J. Yao, C. Jiang, D. Xue, Hydrothermal synthesis and magnetic properties of bismuth ferrites nanocrystals with various morphology. J. Am. Ceram. Soc. 95, 3922–3927 (2012)

    Article  Google Scholar 

  4. M.M. de Góis, W. de Paiva Araújo, R.B. da Silva, G.E. da Luz, J.M. Soares, Bi25FeO40−Fe3O4−Fe2O3 composites: synthesis, structural characterization, magnetic and UV–visible photocatalytic properties. J. Alloys Compd. 785, 598–602 (2019)

    Article  Google Scholar 

  5. C. Y. Zhang, H. J. Sun, W. Chen, J. Zhou, B. Li, Y. B. Wang: Hydrothermal synthesis and photo-catalytic Property of Bi25FeO40 powders. In: 18th IEEE International Symposium on the Applications of Ferroelectrics. pp 1‑3 (2009)

  6. G.-Q. Tan, Y.-Q. Zheng, H.-Y. Miao, A. Xia, H.-J. Ren, Controllable microwave hydrothermal synthesis of bismuth ferrites and photocatalytic characterization. J. Am. Ceram. Soc. 95, 280–289 (2012)

    Article  Google Scholar 

  7. Y. Wu, H. Luo, X. Jiang, H. Wang, J. Geng, Facile synthesis of magnetic Bi25FeO40/rGO catalyst with efficient photocatalytic performance for phenolic compounds under visible light. RSC Adv. 5, 4905–4908 (2015)

    Article  ADS  Google Scholar 

  8. L. Ren, S.Y. Lu, J.Z. Fang, Y. Wu, D.Z. Chen, L.Y. Huang, Y.F. Chen, C. Cheng, Y. Liang, Z.Q. Fang, Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst. Catal. Today 281, 656–661 (2017)

    Article  Google Scholar 

  9. S. Kalikeri, V. Shetty Kodialbail, Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO3/Bi25FeO40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis. Environ. Sci. Pollut. Res. 25, 13881–13893 (2018)

    Article  Google Scholar 

  10. P. Kumari, N. Khare, Structural, optical, magnetic properties of Bi25FeO40 nanoparticles synthesized by hydrothermal method, in Recent Trends in Materials and Devices. (Springer International Publishing, Cham, 2017), pp.139–143

    Chapter  Google Scholar 

  11. D.C. Craig, N.C. Stephenson, Structural studies of some body-centered cubic phases of mixed oxides involving Bi2O3: the structures of Bi25FeO40 and Bi38ZnO60. J. Solid State Chem. 15, 1–8 (1975)

    Article  ADS  Google Scholar 

  12. X. Wu, M. Li, J. Li, G. Zhang, S. Yin, A sillenite-type Bi12MnO20 photocatalyst: UV, visible and infrared lights responsive photocatalytic properties induced by the hybridization of Mn3d and O2p orbitals. Appl. Catal. B Environ. 219, 132–141 (2017)

    Article  Google Scholar 

  13. D.S. Vavilapalli et al., Growth of sillenite Bi12FeO20 single crystals: structural, thermal, optical, photocatalytic features and first principle calculations. Sci. Rep. 10, 22052 (2020)

    Article  ADS  Google Scholar 

  14. M. Valant, D. Suvorov, A Stoichiometric model for sillenites. Chem. Mater. 14, 3471–3476 (2002)

    Article  Google Scholar 

  15. C.E. Infante, B. Carrasco, Stoichiometry and oxygen structure of Fe sillenite. Mater. Lett. 4, 194–197 (1986)

    Article  Google Scholar 

  16. M. Devalette, J. Darriet, M. Couzi, C. Mazeau, P. Hagenmuller, Caracterisation physique de l’environnement tetraedrique des cations A et B dans les phases de structure sillenite. J. Solid State Chem. 43, 45–50 (1982)

    Article  ADS  Google Scholar 

  17. J. Lu, L.J. Qiao, P.Z. Fu, Y.C. Wu, Phase equilibrium of Bi2O3–Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal. J. Cryst. Growth. 318, 936–941 (2011)

    Article  ADS  Google Scholar 

  18. H.A. Harwig, A.G. Gerards, Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. J. Solid State Chem. 26, 265–274 (1978)

    Article  ADS  Google Scholar 

  19. U.P.M. Rasi, N.K. Shihab, S. Angappane, R.B. Gangineni, Coexistence of ferromagnetic and spin glass-like magnetic order in Bi10Co16O38–Bi25FeO40 powder composite. Ceram. Int. 45, 15171–15177 (2019)

    Article  Google Scholar 

  20. M.A. Montgomery, J. Bartram, M. Elimelech, Increasing functional sustainability of water and sanitation supplies in rural sub-Saharan Africa. Environ. Eng. Sci. 26, 1017–1023 (2009)

    Article  Google Scholar 

  21. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades Nanoscience and Technology (Macmillan Publishers Ltd, London, 2009), pp.337–346

    Google Scholar 

  22. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl. Catal. A 359, 25–40 (2009)

    Article  Google Scholar 

  23. N. Le-Minh, S.J. Khan, J.E. Drewes, R.M. Stuetz, Fate of antibiotics during municipal water recycling treatment processes. Water Res. 44, 4295–4323 (2010)

    Article  Google Scholar 

  24. Y. Huang, L. Nengzi, X. Li, L. Meng, Q. Song, X. Cheng, Fabrication of Cu2O/Bi25FeO40 nanocomposite and its enhanced photocatalytic mechanism and degradation pathways of sulfamethoxazole. Mater. Sci. Semicond. Process. 109, 104932 (2020)

    Article  Google Scholar 

  25. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Magnetically recoverable nanocatalysts. Chem. Rev. 111, 3036–3075 (2011)

    Article  Google Scholar 

  26. A. Sun, H. Chen, C. Song, F. Jiang, X. Wang, Y. Fu, Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv. 3, 4332 (2013)

    Article  ADS  Google Scholar 

  27. K.H. Ng, K. Chen, C.K. Cheng, D.-V.N. Vo, Elimination of energy-consuming mechanical stirring: Development of auto-suspending ZnO-based photocatalyst for organic wastewater treatment. J. Hazard. Mater. 409, 124532 (2021)

    Article  Google Scholar 

  28. G. Wang et al., Enhanced visible-light responsive photocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation. J Mater Sci: Mater Electron 30, 10923–10933 (2019)

    Google Scholar 

  29. S. Wang et al., Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chem. Eng. J. Adv. 6, 100089 (2021)

    Article  Google Scholar 

  30. Y. Sun et al., Study on visible light response and magnetism of bismuth ferrites synthesized by a low temperature hydrothermal method. Ceram. Int. 39, 4651–4656 (2013)

    Article  Google Scholar 

  31. F.-E. N’faoui, M. Taibi, J. Aride, A. Boukhari, H. Saadaoui, M. Rouziéres, Spectroscopic, optical, magnetic and dielectric investigation of the orthoborate Ba2Co(BO3)2 nanopowder. J. Mater. Sci. Mater. Electron. 31, 16678–16687 (2020)

    Article  Google Scholar 

  32. P. Kumar, C. Panda, M. Kar, Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3. Smart Mater. Struct. 24, 045028 (2015)

    Article  ADS  Google Scholar 

  33. L.P. Sosman, T. Abritta, M.R. Amaral, N. Cella, H. Vargas, Optical properties of LiGaTiO4: Fe3+. Solid State Commun. 105, 135–138 (1998)

    Article  ADS  Google Scholar 

  34. Y. Liu et al., Geometric and electronic modification of the active Fe3+ sites of α-Fe2O3 for highly efficient toluene combustion. J. Hazard. Mater. 398, 123233 (2020)

    Article  Google Scholar 

  35. H. Arfin, J. Kaur, T. Sheikh, S. Chakraborty, A. Nag, Bi3+-Er3+ and Bi3+-Yb3+ Co-doped Cs2AgInCl6 Double Perovskite Near-Infrared Emitters. Angew. Chem. Int. Ed. 59, 11307–11311 (2020)

    Article  Google Scholar 

  36. J. Li, J. Liu, X. Yu, Synthesis and luminescence properties of Bi3+-doped YVO4 phosphors. J. Alloys Compd. 509, 9897–9900 (2011)

    Article  Google Scholar 

  37. K. Narasimharao, A. Al-Shehri, S. Al-Thabaiti, Porous Ag–Fe2O3 nanocomposite catalysts for the oxidation of carbon monoxide. Appl. Catal. Gen. 505, 431–440 (2015)

    Article  Google Scholar 

  38. J. Han et al., Redefinition of crystal structure and Bi3+ yellow luminescence with strong near-ultraviolet excitation in La3BWO9:Bi3+ phosphor for white light-emitting diodes. ACS Appl. Mater. Interfaces 10, 13660–13668 (2018)

    Article  Google Scholar 

  39. T.R.N. Kutty, M. Nayak, Cationic distribution and its influence on the luminescent properties of Fe3+-doped LiAl5O8 prepared by wet chemical methods. J. Alloys Compd. 269, 75–87 (1998)

    Article  Google Scholar 

  40. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)

    Article  Google Scholar 

  41. L. Boudad, M. Taibi, A. Belayachi, M. Abd-Lefdil, Dielectric relaxation, electrical conductivity and optical studies of solid-state synthesized EuCrO3. J. Mater. Sci. Mater. Electron. 31, 354–360 (2020)

    Article  Google Scholar 

  42. S. Mugiraneza, A.M. Hallas, Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun Phys. 5, 95 (2022)

    Article  Google Scholar 

  43. A.A. Zatsiupa et al., Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite. J. Solid State Chem. 212, 147–150 (2014)

    Article  ADS  Google Scholar 

  44. J. Junquera, Dzyaloshinskii-Moriya interaction turns electric. Nat. Mater. 20, 291–292 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.B. thanks the brain pool program of the National Research Foundation under 2021H1D3A2A02096250.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Jebari or M. Boujnah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebari, H., Tahiri, N., Boujnah, M. et al. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40. Appl. Phys. A 128, 842 (2022). https://doi.org/10.1007/s00339-022-05973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05973-4

Keywords

Navigation