Skip to main content

Advertisement

Log in

Preparation of Ag doped MgO for electrochemical sensing and degradation of the resorcinol

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pollutants are continually being released into the land, water, and air around the world as a result of the high levels of human activity and urbanisation, which cause a rapid an increase in the growth of pollution. To meet the complex specifications needed for the separation of these contaminants regarding selectivity, sensitivity and limit of detection using various nanoparticles, researchers are modifying the electrodes using different nanoparticles. In this study, silver-doped magnesium oxide nanoparticles are prepared via sol–gel method and fabricated Ag-doped MgO-modified electrodes for investigating its electrochemical determination of resorcinol (RS) and RS degradation as measured with photocatalytic activity in the visible region. A number of characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray dispersive spectroscopy (EDS), UV–Vis spectroscopy, XPS and Fourier transform infrared spectroscopy (FTIR) were used to confirm the optical properties, composition and morphology of synthesised Ag doped MgO nanoparticles. While the crystalline size of the synthesised nanoparticles was found to be 28 nm, the strong XRD peaks indicate the high crystallinity of the particles. The detection and quantification limits of the fabricated electrode are found to be 20.2 µM and 61.3 µM, respectively. The correlation value (R2) was ~ 0.99. Pure resorcinol exhibits a maximum absorption peak at 283 nm in its UV–visible spectrum. From the discoloration of resorcinol within 60 min, it can be shown that the synthesised material has a capability to degrade resorcinol effectively in the presence of sodium borohydride. The synthesised Ag-doped MgO nanoparticles degraded the RS with 98% efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The raw/processed data required to reproduce these findings will be available on reasonable request.

References

  1. W. Jin, G. Maduraiveeran, Electrochemical detection of chemical pollutants based on gold nanomaterials. Trends Environ. Anal. Chem. 14, 28–36 (2017)

    Google Scholar 

  2. J. Fabri, L.R. Silva, J.S. Stefano, J.F. Pereira, D.R. Cocco, R.A. Muñoz, D.P. Rocha, In situ electrochemical determination of resorcinol using a fully 3D printed apparatus. Microchem. J. 191, 108810 (2023)

    Google Scholar 

  3. C. Romagnoli, A. Baldisserotto, C.B. Vicentini, D. Mares, E. Andreotti, S. Vertuani, S. Manfredini, Antidermatophytic action of resorcinol derivatives: ultrastructural evidence of the activity of phenylethyl resorcinol against Microsporumgypseum. Molecules 21(10), 1306 (2016)

    Google Scholar 

  4. S.E. Lee, K. Kwon, S.W. Oh, S.J. Park, E. Yu, H. Kim, S. Yang, J.Y. Park, W.J. Chung, J.Y. Cho, J. Lee, Mechanisms of resorcinol antagonism of benzo [a] pyrene-induced damage to human keratinocytes. Biomol. Ther. 29(2), 227 (2021)

    Google Scholar 

  5. M. Shahinozzaman, T. Ishii, M.A. Halim, M.A. Hossain, M.T. Islam, S. Tawata, Cytotoxic and anti-inflammatory resorcinol and alkylbenzoquinone derivatives from the leaves of Ardisia sieboldii. Zeitschrift für Naturforschung C 74(11–12), 303–311 (2019)

    Google Scholar 

  6. F. Gautier, F. Tourneix, H.A. Vandecasteele, E. van Vliet, D. Bury, N. Alépée, Read-across can increase confidence in the next generation risk assessment for skin sensitisation: A case study with resorcinol. Regul. Toxicol. Pharmacol. 117, 104755 (2020)

    Google Scholar 

  7. L.A. Alshahrani, L. Liu, P. Sathishkumar, J. Nan, F.L. Gu, Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. J. Electroanal. Chem. 815, 68–75 (2018)

    Google Scholar 

  8. B. Zargar, A. Hatamie, Colorimetric determination of resorcinol based on localized surface plasmon resonance of silver nanoparticles. Analyst 137(22), 5334–5338 (2012)

    ADS  Google Scholar 

  9. W. Ren, Y. Zhang, W.Y. Liang, X.P. Yang, W.D. Jiang, X.H. Liu, W. Zhang, A facile and sensitive ratiometric fluorescence sensor for rapid visual monitoring of trace resorcinol. Sens. Actuators B Chem. 330, 129390 (2021)

    Google Scholar 

  10. A.I. Abdullah, S.M. Abass, Azo coupling reaction for indirect spectrophotometric determination of furosemide using resorcinol as a reagent. IOP Conf. Ser. Mater. Sci. Eng. 1058(1), 012077 (2021)

    Google Scholar 

  11. H. Yang, J. Zha, P. Zhang, Y. Qin, T. Chen, F. Ye, Fabrication of CeVO4 as nanozyme for facile colorimetric discrimination of hydroquinone from resorcinol and catechol. Sens. Actuators B Chem. 247, 469–478 (2017)

    Google Scholar 

  12. D.N. Lande, S.A. Bhadane, S.P. Gejji, Noncovalent interactions accompanying encapsulation of resorcinol within azacalix [4] pyridine macrocycle. J. Phys. Chem. A 121(8), 1814–1824 (2017)

    Google Scholar 

  13. Z. Pan, A. Puente-Urbina, A. Bodi, J.A. van Bokhoven, P. Hemberger, Isomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone. Chem. Sci. 12(9), 3161–3169 (2021)

    Google Scholar 

  14. M. Kumar, B.K. Swamy, B. Hu, M. Wang, G. Yasin, B. Liang, H.D. Madhuchandra, W. Zhao, Electrochemical activation of copper oxide decorated graphene oxide modified carbon paste electrode surface for the simultaneous determination of hazardous di-hydroxybenzene isomers. Microchem. J. 168, 106503 (2021)

    Google Scholar 

  15. S. Nsanzamahoro, Y. Zhang, W.F. Wang, Y.Z. Ding, Y.P. Shi, J.L. Yang, Fluorescence “turn-on” of silicon-containing nanoparticles for the determination of resorcinol. Microchim. Acta 188, 1–9 (2021)

    Google Scholar 

  16. K. Abuhasel, M. Kchaou, M. Alquraish, Y. Munusamy, Y.T. Jeng, Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities. Water 13(7), 980 (2021)

    Google Scholar 

  17. N. Baig, A. Waheed, M. Sajid, I. Khan, A.N. Kawde, M. Sohail, Porous graphene-based electrodes: advances in electrochemical sensing of environmental contaminants. Trends Environ. Anal. Chem. 30, e00120 (2021)

    Google Scholar 

  18. C.M. Primo, E. Buffon, N.R. Stradiotto, A carbon nanotubes-pectin composite for electrochemical determination of copper in aviation biokerosene by anodic stripping voltammetry. Fuel 302, 121180 (2021)

    Google Scholar 

  19. G. Ashraf, M. Asif, A. Aziz, T. Iftikhar, H. Liu, Rice-spikelet-like copper oxide decorated with platinum stranded in the CNT network for electrochemical in vitro detection of serotonin. ACS Appl. Mater. Interfaces 13(5), 6023–6033 (2021)

    Google Scholar 

  20. A. Aziz, M. Asif, G. Ashraf, U. Farooq, Q. Yang, S. Wang, Trends in biosensing platforms for SARS-CoV-2 detection: a critical appraisal against standard detection tools. Curr. Opin. Colloid Interface Sci. 52, 101418 (2021)

    Google Scholar 

  21. G. Ashraf, A. Aziz, R.N. Qaisrani, W. Chen, M. Asif, Detecting and inactivating severe acute respiratory syndrome coronavirus-2 under the auspices of electrochemistry. Curr. Res. Chem. Biol. 1, 100001 (2021)

    Google Scholar 

  22. U. Manhas, S. Sharma, S. Singh, I. Qadir, A.K. Atri, D. Singh, Impact of copper immobilization on dramatic conversion of inactive NiAlFeO4 to an active catalyst for reduction of nitrophenols and a visible light photocatalyst for effective exclusion of organic contaminants from waste water. New J. Chem. 47, 13558–13580 (2023)

    Google Scholar 

  23. N. Baig, M. Sajid, T.A. Saleh, Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends Anal. Chem. 111, 47–61 (2019)

    Google Scholar 

  24. S. Singh, A.K. Atri, I. Qadir, S. Sharma, U. Manhas, D. Singh, Role of different fuels and sintering temperatures in the structural, optical, magnetic, and photocatalytic properties of chromium-containing nickel ferrite: kinetic study of photocatalytic degradation of rhodamine B dye. ACS Omega 8(7), 6302–6317 (2023)

    Google Scholar 

  25. G. Ashraf, M. Asif, A. Aziz, A.Q. Dao, T. Zhang, T. Iftikhar, Q. Wang, H. Liu, Facet-energy inspired metal oxide extended hexapods decorated with graphene quantum dots: sensitive detection of bisphenol A in live cells. Nanoscale 12(16), 9014–9023 (2020)

    Google Scholar 

  26. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    ADS  Google Scholar 

  27. M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq. 278, 672–676 (2019)

    Google Scholar 

  28. H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad, A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem. 43(5), 2362–2367 (2019)

    Google Scholar 

  29. M.R. Bindhu, M. Umadevi, M.K. Micheal, M.V. Arasu, N.A. Al-Dhabi, Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater. Lett. 166, 19–22 (2016)

    Google Scholar 

  30. Z.M. Alaizeri, H.A. Alhadlaq, S. Aldawood, M.J. Akhtar, M.S. Amer, M. Ahamed, Facile synthesis, characterization, photocatalytic activity, and cytotoxicity of Ag-doped MgO nanoparticles. Nanomaterials 11(11), 2915 (2021)

    Google Scholar 

  31. A.U. Khan, A.U. Khan, B. Li, M.H. Mahnashi, B.A. Alyami, Y.S. Alqahtani, A.O. Alqarni, Z.U.H. Khan, S. Ullah, M. Wasim, Q.U. Khan, Biosynthesis of silver capped magnesium oxide nanocomposite using Olea cuspidata leaf extract and their photocatalytic, antioxidant and antibacterial activity. Photodiagn. Photodyn. Ther. 33, 102153 (2021)

    Google Scholar 

  32. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7(1), 17–28 (2016)

    Google Scholar 

  33. Y. Cai, D. Wu, X. Zhu, W. Wang, F. Tan, J. Chen, X. Qiao, X. Qiu, Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation. Ceram. Int. 43(1), 1066–1072 (2017)

    Google Scholar 

  34. A. Kiani, G. Nabiyouni, S. Masoumi, D. Ghanbari, A novel magnetic MgFe2O4–MgTiO3 perovskite nanocomposite: rapid photo-degradation of toxic dyes under visible irradiation. Compos. B Eng. 175, 107080 (2019)

    Google Scholar 

  35. P. Panchal, D.R. Paul, S. Gautam, P. Meena, S.P. Nehra, S. Maken, A. Sharma, Photocatalytic and antibacterial activities of green synthesized Ag doped MgO nanocomposites towards environmental sustainability. Chemosphere 297, 134182 (2022)

    ADS  Google Scholar 

  36. J.A. Wang, O. Novaro, X. Bokhimi, T. Lopez, R. Gomez, J. Navarrete, M.E. Llanos, E. Lopez-Salinas, Characterizations of the thermal decomposition of bruciteprepared by sol–gel technique for synthesis of nanocrystalline MgO. Mater. Lett. 35(5–6), 317–323 (1998)

    Google Scholar 

  37. N.G. Vannerberg, The formation and structure of magnesium peroxide. Ark Kemi 14, 99–105 (1959)

    Google Scholar 

  38. Y. Meng, A sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomaterials 5(2), 1124–1135 (2015)

    Google Scholar 

  39. G. Balakrishnan, R. Velavan, K.M. Batoo, E.H. Raslan, Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 16, 103013 (2020)

    Google Scholar 

  40. N. Rani, S. Chahal, P. Kumar, R. Shukla, S.K. Singh, Role of oxygen vacancies for mediating ferromagnetic ordering in La-doped MgO nanoparticles. J. Supercond. Novel Magn. 33, 1473–1480 (2020)

    Google Scholar 

  41. R. Kant, A.K. Singh, A. Arora, Tuning of MgO nanoparticles on Ag dopant additions for charge storage applications. Vacuum 189, 110247 (2021)

    ADS  Google Scholar 

  42. N.C.S. Selvam, R.T. Kumar, L.J. Kennedy, J.J. Vijaya, Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloy Compd. 509(41), 9809–9815 (2011)

    Google Scholar 

  43. J. Zhou, S. Yang, J. Yu, Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions. Colloids Surf. A 379(1–3), 102–108 (2011)

    Google Scholar 

  44. H. Niu, Q. Yang, K. Tang, Y. Xie, Large-scale synthesis of single-crystalline MgO with bone-like nanostructures. J. Nanopart. Res. 8, 881–888 (2006)

    ADS  Google Scholar 

  45. C.H. Ashok, R.K. Venkateswara, C.H. Shilpa-Chakra, Synthesis and characterization of MgO/TiO2 nanocomposites. Nanomed. Nanotechnol 6, 2–5 (2015)

    Google Scholar 

  46. M. Kandiban, P. Vigneshwaran, I.V. Potheher, Synthesis and characterization of mgo nanoparticles for photocatalytic applications. In: Conference Paper, vol. 3 (Department of Physics, Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli, Tamil Nadu, India, 2015), pp. 941–947

  47. A. Singh, A. Sharma, S. Arya, Human sweat-based wearable glucose sensor on cotton fabric for real-time monitoring. J. Anal. Sci. Technol. 13(1), 11 (2022)

    Google Scholar 

  48. W. Liu, L. Wu, X. Zhang, J. Chen, Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at nitrogen doped porous carbon nanopolyhedrons-multiwall carbon nanotubes hybrid materials modified glassy carbon electrode. Bull. Korean Chem. Soc. 35(1), 204–210 (2014)

    Google Scholar 

  49. S.M. Ghoreishi, M. Behpour, E. Hajisadeghian, M. Golestaneh, Voltammetric determination of resorcinol on the surface of a glassy carbon electrode modified with multi-walled carbon nanotube. Arab. J. Chem. 9, S1563–S1568 (2016)

    Google Scholar 

  50. S. Ameen, E.B. Kim, M.S. Akhtar, H.S. Shin, Electrochemical detection of resorcinol chemical using unique cabbage like ZnO nanostructures. Mater. Lett. 209, 571–575 (2017)

    Google Scholar 

  51. Y. Chen, X. Liu, S. Zhang, L. Yang, M. Liu, Y. Zhang, S. Yao, Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au–Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim. Acta 231, 677–685 (2017)

    Google Scholar 

  52. K.D. Kıranşan, E. Topçu, Graphene paper with sharp-edged nanorods of Fe–CuMOF as an excellent electrode for the simultaneous detection of catechol and resorcinol. Electroanalysis 31(12), 2518–2529 (2019)

    Google Scholar 

  53. M. Khodari, G.A.M. Mersal, E.M. Rabie, H.F. Assaf, Electrochemical sensor based on carbon paste electrode modified by TiO2 nano-particles for the voltammetric determination of resorcinol. Int. J. Electrochem. Sci 13, 3460–3474 (2018)

    Google Scholar 

  54. J. Huang, Y. Liu, T. You, Carbon nanofiber based electrochemical biosensors: a review. Anal. Methods 2(3), 202–211 (2010)

    Google Scholar 

  55. H. Zhang, X. Bo, L. Guo, Electrochemical preparation of porous graphene and its electrochemical application in the simultaneous determination of hydroquinone, catechol, and resorcinol. Sens. Actuators B Chem. 220, 919–926 (2015)

    Google Scholar 

  56. K.J. Huang, L. Wang, Y.J. Liu, T. Gan, Y.M. Liu, L.L. Wang, Y. Fan, Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim. Acta 107, 379–387 (2013)

    Google Scholar 

  57. D. Yin, J. Liu, X. Bo, L. Guo, Cobalt-iron selenides embedded in porous carbon nanofibers for simultaneous electrochemical detection of trace of hydroquinone, catechol and resorcinol. Anal. Chim. Acta 1093, 35–42 (2020)

    Google Scholar 

  58. R. Aslam, B. Fatima, D. Hussain, R. Nawaz, S. Majeed, M.N. Ashiq, T.I. Qureshi, M. Najam-Ul-Haq, Sensitive and high recovery electrochemical sensing of resorcinol by Cd–glutathione complex-modified glassy carbon electrode. Int. J. Environ. Anal. Chem. 101(15), 2785–2795 (2021)

    Google Scholar 

  59. S. Singh, S. Sharma, U. Manhas, I. Qadir, A.K. Atri, D. Singh, Different fuel-adopted combustion syntheses of nano-structured NiCrFeO4: a highly recyclable and versatile catalyst for reduction of nitroarenes at room temperature and photocatalytic degradation of various organic dyes in unitary and ternary solutions. ACS Omega 7(23), 19853–19871 (2022)

    Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges the Science and Engineering Research Board (SERB), India for the support (File no. EEQ/2021/000172). This work was also supported by the JK Science Technology and Innovation Council, Department of Science and Technology, JKUT.

Author information

Authors and Affiliations

Authors

Contributions

AD: methodology, writing, reviewing and editing. AS: methodology, writing, reviewing and editing. AS: methodology, writing, reviewing and editing. AKS: writing, reviewing and editing. RM: writing, reviewing and editing. VG: writing, reviewing and editing. SD: writing, reviewing and editing. SA: conceptualization, supervision, methodology, writing, reviewing and editing.

Corresponding author

Correspondence to Sandeep Arya.

Ethics declarations

Conflict of interest

The authors declare that there is no competing/conflict of interest.

Ethical approval

Not applicable to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, A., Singh, A., Sharma, A. et al. Preparation of Ag doped MgO for electrochemical sensing and degradation of the resorcinol. Appl. Phys. A 129, 692 (2023). https://doi.org/10.1007/s00339-023-06972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06972-9

Keywords

Navigation