Skip to main content
Log in

Plant-assisted green preparation of silver nanoparticles using leaf extract of Dalbergia sissoo and their antioxidant, antibacterial and catalytic applications

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Plant-mediated preparation of silver nanoparticles (AgNPs) is thought to be a more economical and environmentally benign process in comparison to physical and chemical synthesis methods. In the present study, the aqueous leaf extract of Dalbergia sissoo was prepared and utilized to reduce silver ion (Ag+) during the green synthesis of silver nanoparticles (DL-AgNPs). The formation of DL-AgNPs was verified using UV–Vis spectra, exhibiting the surface plasmon resonance (SPR) band at around 450 nm. FT-IR analysis revealed the kinds of phytochemicals that serve as reducing and capping agents while DL-AgNPs are being synthesized. Analysis of scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HR-TEM) images verified the development of spherical and oval-shaped DL-AgNPs, with sizes ranging from 10 to 25 nm. The stability and particle size distribution of synthesized DL-AgNPs were ensured by zeta potential and DLS (dynamic light scattering) investigations. Additionally, X-ray diffraction (XRD) analysis confirmed the crystalline nature of DL-AgNPs. In antioxidant experiments, DL-AgNPs demonstrated significant scavenging capacities of DPPH and ABTS radicals with EC50 values of 51.32 and 33.32 μg/mL, respectively. The antibacterial activity of DL-AgNPs was shown to be significant against harmful bacteria, with a maximum zone of inhibition (21.5 ± 0.86 mm) against Staphylococcus aureus. Furthermore, DL-AgNPs exhibited effective catalytic activity to degrade environment-polluting dyes (methylene blue, methyl orange, and Congo red) and toxic chemicals (p-nitrophenol). The results of all these studies suggested that DL-AgNPs made from the leaf extract of Dalbergia sissoo have merit for application in the environmental and biomedical fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Ritu G, Huan G (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37(3):209–230

    Article  Google Scholar 

  2. Kavita S, Vinita G (2023) Field emission scanning electron microscopic X-ray diffraction and ultraviolet spectroscopic analysis of Terminalia bellerica based silver nanoparticles and evaluation of their antioxidant, catalytic and antibacterial activity. Heliyon 9(6):e16944. https://doi.org/10.1016/j.heliyon.2023.e16944

    Article  CAS  Google Scholar 

  3. Nath D, Banerjee P (2013) Green nanotechnology - a new hope for medical biology. Environ Toxicol Pharmacol 36(3):997–1014. https://doi.org/10.1016/j.etap.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Ren X, Meng X, Chen D, Tang F, Jiao J (2005) Using silver nanoparticle to enhance current response of biosensor. Biosens Bioelectron 21(3):433–437. https://doi.org/10.1016/j.bios.2004.08.052

    Article  CAS  PubMed  Google Scholar 

  5. Javaid A, Oloketuyi SF, Khan KMM (2018) Diversity of bacterial synthesis of silver nanoparticles. BioNanoSci 8:43–59. https://doi.org/10.1007/s12668-017-0496-x

    Article  Google Scholar 

  6. Khan AU, Malik N, Khan M, Cho MH, Khan MM (2018) Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng 41:1–20. https://doi.org/10.1007/s00449-017-1846-3

    Article  CAS  PubMed  Google Scholar 

  7. Khan MM, Kalathil S, Lee J, Cho M (2012) Synthesis of cysteine capped silver nanoparticles by electrochemically active biofilm and their antibacterial activities. Bull Korean Chem Soc 33(8):2592–2596. https://doi.org/10.5012/bkcs.2012.33.8.2592

    Article  CAS  Google Scholar 

  8. Alsaiari NS, Alzahrani FM, Amari A, Osman H, Harharah HN, Elboughdiri N, Tahoon MA (2023) Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules 28(1):463. https://doi.org/10.3390/molecules28010463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kale A, Bao Y, Zhou Z, Prevelige PE, Gupta A (2013) Directed self-assembly of CdS quantum dots on bacteriophage P22 coat protein templates. Nanotechnology 24(4):045603. https://doi.org/10.1088/0957-4484/24/4/045603

    Article  CAS  PubMed  Google Scholar 

  10. Khan AA, Fox EK, Brougham DF, Wege C, Bittner AM (2013) pH Control of the electrostatic binding of gold and iron oxide nanoparticles to tobacco mosaic virus. Langmuir 29(7):2094–2098. https://doi.org/10.1021/la3044126

    Article  CAS  PubMed  Google Scholar 

  11. Nayak S, Rao CV, Mutalik S (2022) Exploring bimetallic Au–Ag core shell nanoparticles reduced using leaf extract of Ocimum tenuiflorum as a potential antibacterial and nanocatalytic agent. Chem Pap 76:6487–6497. https://doi.org/10.1007/s11696-022-02299-6

    Article  CAS  Google Scholar 

  12. Pradeep B, Hemba P, Jagadeesh AK, Ramakkanavar CG, Nayak S, Rao CV (2021) Anticandidal and antioxidant activity of silver and gold nanoparticles biosynthesised using matured areca nut husk extract. Int J Nanoparticles 13(1):21–32. https://doi.org/10.1504/IJNP.2021.114897

    Article  CAS  Google Scholar 

  13. Nayak S, Sajankila SP, Rao CVaman, Hegde AR, Mutalik S, (2021) Biogenic synthesis of silver nanoparticles using Jatropha curcas seed cake extract and characterization: evaluation of its antibacterial activity. Energy Sources A: Recovery Util Environ Eff 43(24):3415–3423. https://doi.org/10.1080/15567036.2019.1632394

    Article  CAS  Google Scholar 

  14. Nayak S, Goveas LC, Vaman Rao C (2017) Biosynthesis of silver nanoparticles using turmeric extract and evaluation of its anti-bacterial activity and catalytic reduction of methylene blue. In: Mohan BR, Srinikethan G, Meikap B (eds) Materials, Energy and Environment Engineering. Springer, Singapore

    Google Scholar 

  15. Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A (2019) Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124:148–154. https://doi.org/10.1016/j.ijbiomac.2018.11.101

    Article  CAS  PubMed  Google Scholar 

  16. Ghoshal G, Singh M (2022) Characterization of silver nano-particles synthesized using fenugreek leave extract and its antibacterial activity. Mater Sci Energy Technol 5:22–29. https://doi.org/10.1016/j.mset.2021.10.001

    Article  CAS  Google Scholar 

  17. Tran HV, Nguyen TV, Nguyen LT, Hoang HS, Huynh CD (2020) Silver nanoparticles as a bifunctional probe for label-free and reagentless colorimetric hydrogen peroxide chemosensor and cholesterol biosensor. J Sci Adv Mater Devices 5:385–391. https://doi.org/10.1016/j.jsamd.2020.06.001

    Article  Google Scholar 

  18. Chandhirasekar K, Thendralmanikandan A, Thangavelu P, Nguyen BS, Nguyen TA, Sivashanmugan K, Nareshkumar A, Nguyen VH (2021) Plant-extractassisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Mater Lett 287:129265. https://doi.org/10.1016/j.matlet.2020.129265

    Article  CAS  Google Scholar 

  19. Lawrence AA, Jeeva P, Monisha SI, Santhoshkumar M, Manikandan E (2021) Natural synthesis of silver nanoparticles by using seed of tamarind and its anti-oxidant potential. J Fund Com Res 7(12):141–150

    Google Scholar 

  20. Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S (2020) An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10(11):1498. https://doi.org/10.3390/biom10111498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Niluxsshun MCD, Masilamani K, Mathiventhan U (2021) Green synthesis of Silver nanoparticles from the extracts of fruit peel of Citrus tangerine, Citrus sinensis, Citrus limon for antibacterial activities. Bioinorg Chem Appl 2021:6695734. https://doi.org/10.1155/2021/6695734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nyoni S, Muzenda E, Mukaratirwa-Muchanyereyi N (2019) Evaluation of antibacterial activity of silver nanoparticles prepared from Sclerocarya birrea stem bark and leaf extracts. Nano Biomed Eng 11(1):28–34. https://doi.org/10.5101/nbe.v11i1.p28-34

    Article  CAS  Google Scholar 

  23. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanics of silver nanoparticles on Escherichia coli. Appl Microbial Biotechnol 8:1115–1122. https://doi.org/10.1007/s00253-009-2159-5

    Article  CAS  Google Scholar 

  24. Nayak S, Goveas LC, Kumar PS, Selvaraj R, Vinayagam R (2022) Plant-mediated gold and silver nanoparticles as detectors of heavy metal contamination. Food Chem Toxicol 167:113271. https://doi.org/10.1016/j.fct.2022.113271

    Article  CAS  PubMed  Google Scholar 

  25. Harmin S, Islam MB, Saha BK, Ahmed F, Maitra B, Uddin Rasel MZ, Quaisaar N, Rabbi MA (2023) Evaluation of antibacterial activity, in-vitro cytotoxicity and catalytic activity of biologically synthesized silver nanoparticles using leaf extracts of Leea macrophylla. Heliyon 9:e20810. https://doi.org/10.1016/j.heliyon.2023.e20810

    Article  CAS  Google Scholar 

  26. Al-Quran S (2008) Taxonomical and pharmacological survey of therapeutic plants in Jordan. J Nat Prod 1:10–26

    Google Scholar 

  27. Brijesh S, Daswani PG, Tetali P, Antia NH, Birdi Tannaz J (2006) Studies on the Dalbergia sissoo (Roxb.) leaves, possible mechanism(s) of action in infectious diarrhoea. Indian J Pharmacol 38:120–124. https://doi.org/10.4103/0253-7613.24618

    Article  Google Scholar 

  28. Hajare SW, Chandra S, Sharma J, Tondon SK, Lal J, Telanj AJ (2001) Anti-inflammatory activity of Dalbergia sisso leaves. Fitoterapia 72:131–139. https://doi.org/10.1016/s0367-326x(00)00272-0

    Article  CAS  PubMed  Google Scholar 

  29. Hajare SW, Chandra S, Tondon SK, Sharma J, Lal J, Telanj AJ (2000) Analgesic and antipyretic activities of Dalbergia sisso leaves. Indian J Pharmacol 32:357–360

    Google Scholar 

  30. Chandra P, Sachan N, Pal D (2015) Protective effect of Dalbergia sissoo Roxb. ex DC. (family: Fabaceae) leaves against experimentally induced diarrhoea and peristalsis in mice. Toxicol Ind Health 31(12):1229–1235. https://doi.org/10.1177/0748233713491815

    Article  CAS  PubMed  Google Scholar 

  31. Farag SF, Ahmed AS, Terashima K, Takaya Y, Niwa M (2001) Isoflavonoid glycosides from Dalbergia sissoo. Phytochemistry 57(8):1263–1268. https://doi.org/10.1016/s0031-9422(01)00195-9

    Article  CAS  PubMed  Google Scholar 

  32. Dixit P, Chillara R, Khedgikar V, Gautam J, Kushwaha P, Kumar A, Singh D, Trivedi R, Maurya R (2012) Constituents of Dalbergia sissoo Roxb leaves with osteogenic activity. Bioorg Med Chem Lett 22(2):890–897. https://doi.org/10.1016/j.bmcl.2011.12.036

    Article  CAS  PubMed  Google Scholar 

  33. Rana V, Kumar V, Soni PL (2012) Structural characterization of an acidic polysaccharide from Dalbergia sissoo Roxb leaves. Carbohydr Polym 90(1):243–250. https://doi.org/10.1016/j.carbpol.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  34. Kumar P, Kushwaha P, Khedgikar V, Gautam J, Choudhary D, Singh D, Trivedi R, Maurya R (2014) Neoflavonoids as potential osteogenic agents from Dalbergia sissoo heartwood. Bioorg Med Chem Lett 24(12):2664–2668. https://doi.org/10.1016/j.bmcl.2014.04.056

    Article  CAS  PubMed  Google Scholar 

  35. Yasmeen S, Gupta P (2019) Interaction of selected terpenoids from Dalbergia sissoo with catalytic domain of matrix metalloproteinase-1: an in silico assessment of their anti-wrinkling potential. Bioinform Biol Insights 13:1177932219896538. https://doi.org/10.1177/1177932219896538

    Article  PubMed Central  PubMed  Google Scholar 

  36. Alam MW, Naeem S, Usman SM, Kanwal Q, BaQais A, Aldughaylibi FS, Nahvi I (2022) Cerium oxide nanorods synthesized by Dalbergia sissoo extract for antioxidant, cytotoxicity, and photocatalytic applications. Molecules 27(23):8188. https://doi.org/10.3390/molecules27238188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ansari SA, Khan MM, Ansari MO, Cho MH (2015) Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Sol Energy Mater Sol Cells 141:162–170. https://doi.org/10.1016/j.solmat.2015.05.029

    Article  CAS  Google Scholar 

  38. Sheme FA, Aziz MA, Karim MR, Rahman MH, Rabbi MA, Nurujjaman Md, Habib MR (2023) Green preparation of silver nanoparticles using leaf extract of Amoora rohituka for antioxidant, antibacterial and anticancer applications. J Agric Food Res 14:100889. https://doi.org/10.1016/j.jafr.2023.100889

    Article  CAS  Google Scholar 

  39. Song WC, Kim B, Park SY, Park G, Oh J (2022) Biosynthesis of silver and gold nanoparticles using Sargassum horneri extract as catalyst for industrial dye degradation. Arab J Chem 15(9):104056. https://doi.org/10.1016/j.arabjc.2022.104056

    Article  CAS  Google Scholar 

  40. Fareed N, Nisa S, Bibi Y, Fareed A, Ahmed W, Sabir M, Alam S, Sajjad A, Kumar S, Hussain M, Syed A, Bahkali AH, Elgorban QAMA (2023) Green synthesized silver nanoparticles using carrot extract exhibited strong antibacterial activity against multidrug resistant bacteria. J King Saud Univ Sci 35:102477. https://doi.org/10.1016/j.jksus.2022.102477

    Article  Google Scholar 

  41. Wang Y, Wei S (2022) Green fabrication of bioactive silver nanoparticles using Mentha pulegium extract under alkaline: an enhanced anticancer activity. ACS Omega 7(1):1494–1504

    Article  CAS  PubMed  Google Scholar 

  42. Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B (2021) Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 11:2804–2837. https://doi.org/10.1039/d0ra09941d

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nyoni S, Muzenda E, Mukaratirwa-Muchanyereyi N (2019) Characterization and evaluation of antibacterial activity of silver nanoparticles prepared from Sclerocarya birrea stem bark and leaf extracts. Nano Biomed Eng 11(1):28–34. https://doi.org/10.5101/nbe.v11i1.p28-34

    Article  CAS  Google Scholar 

  44. Zhang X, Zhi G, Weishen SG (2016) Silver nanoparticles: synthesis characterisation, properties, application and therapeutic approaches. J Mol Sci 17(9):1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  45. Salehi S, Shandiz S, Ghanbar F, Darvish M, Ardestani M, Mirzale JM (2016) Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer and antibacterial properties. Int J Nanomed 11:1835–1846. https://doi.org/10.2147/IJN.S99882

    Article  CAS  Google Scholar 

  46. Li S, Al-Misned FA, El-Serehy HA, Yang L (2021) Green synthesis of gold nanoparticles using aqueous extract of Mentha Longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arabian J Chem 14(2):102931. https://doi.org/10.1016/j.arabjc.2020.102931

    Article  CAS  Google Scholar 

  47. Ishino K, Wakita C, Shibata T et al (2020) Lipid peroxidation generates body odor component trans-2-nonenal covalently bound to protein in vivo. J Biol Chem 285:15302–15313. https://doi.org/10.1074/jbc.M109.068023

    Article  CAS  Google Scholar 

  48. Saygi KO, Cacan E (2021) Antioxidant and cytotoxic activities of silver nanoparticles synthesized using Tilia cordata flowers extract. Mater Today Commun 27:102316. https://doi.org/10.1016/j.mtcomm.2021.102316

    Article  CAS  Google Scholar 

  49. Khan AU, Khan M, Khan MM (2019) Antifungal and antibacterial assay by silver nanoparticles synthesized from aqueous leaf extract of Trigonella foenum-graecum. BioNanoSci 9:597–602. https://doi.org/10.1007/s12668-019-00643-x

    Article  Google Scholar 

  50. Kanimozhi S, Durga R, Sabithasree M, Kumar AV, Sofiavizhimalar A, Kadam AA, Rajagopal R, Sathya R, Azelee NIW (2022) Biogenic synthesis of silver nanoparticle using Cissus quadrangularis extract and its invitro study. J King Saud Univ Sci 34(4):101930. https://doi.org/10.1016/j.jksus.2022.101930

    Article  Google Scholar 

  51. Bijoy M, Khatun MH, Ahmed F, Ahmed N, Kadri HJ, Rasel MZU, Saha BK, Hakim M, Rashel KS, Habib MR, Rabbi MA (2023) Biosynthesis of Bixa orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. Arab J Chem 16:104675. https://doi.org/10.1016/j.arabjc.2023.104675

    Article  CAS  Google Scholar 

  52. Adebayo-Tayo B, Salaam A, Ajibade A (2019) Green synthesis of silver nanoparticle using Oscillatoria sp extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon 5:e02502. https://doi.org/10.1016/j.heliyon.2019.e02502

    Article  PubMed Central  PubMed  Google Scholar 

  53. Khuda F, Jamil M, Khalil AAK, Ullah R, Ullah N, Naureen F, Abbas M, Khan MS, Ali S, Farooqi HMU, Ahn M (2022) Assessment of antioxidant and cytotoxic potential of silver nanoparticles synthesized from root extract of Reynoutria japonica Houtt. Arabian J Chem 15(12):104327. https://doi.org/10.1016/j.arabjc.2022.104327

    Article  CAS  Google Scholar 

  54. Alharbi NS, Alsubhi NS, Felimban AI (2022) Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J Radiat Res Appl Sci 15(3):109–124. https://doi.org/10.1016/j.jrras.2022.06.012

    Article  CAS  Google Scholar 

  55. Kumar CMK, Yugandhar P, Savithramma N (2016) Biological synthesis of silver nanoparticles from Adansonia digitata L fruit pulp extract, characterization, and its antimicrobial properties. J Intercult Ethnopharmacol 5(1):79–85. https://doi.org/10.5455/jice.20160124113632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Abdellatif AAH, Alturki HNH, Tawfeek HM (2021) Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Sci Rep 11:84. https://doi.org/10.1038/s41598-020-79834-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Arif R, Uddin R (2021) A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications. Med Devices Sensors 4(1):e10158. https://doi.org/10.1002/mds3.10158

    Article  CAS  Google Scholar 

  58. Rautela A, Rani J, Das DD (2019) Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol 10:5. https://doi.org/10.1186/s40543-018-0163-z

    Article  Google Scholar 

  59. Mehmood A, Murtaza G, Bhatti TM, Raffi M, Kausar R (2014) Antibacterial efficacy of silver nanoparticles synthesized by a green method using bark extract of Melia azedarach L. J Pharm Innov 9(3):238–245. https://doi.org/10.1007/s12247-014-9190-5

    Article  Google Scholar 

  60. Singh H, Du J, Singh P, Yi TH (2018) Role of green silver nanoparticles synthesized from Symphytum officinale leaf extract in protection against UVB–induced photoaging. J Nanostruct Chem 8(3):359–368. https://doi.org/10.1007/s40097-018-0281-6

    Article  CAS  Google Scholar 

  61. Saumya S, Basha P (2011) Antioxidant effect of Lagerstroemia speciosa Pers (Banaba) leaf extract in streptozotocin-induced diabetic mice. Indian J Exp Biol 49:125–131

    CAS  PubMed  Google Scholar 

  62. Hamedi S, Shojaosadati SA (2019) Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: evaluation of their biological and catalytic activities. Polyhedron 171:172–180. https://doi.org/10.1016/j.poly.2019.07.010

    Article  CAS  Google Scholar 

  63. Panacek A, Prucek R, Hrbac J, Nevecn TJ, Steffkova J, Zboril R, Kvitek L (2014) Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity. Chem Mater 26:1332–1339. https://doi.org/10.1021/cm400635z

    Article  CAS  Google Scholar 

  64. Singh K, Gupta V (2023) Field emission scanning electron microscopic, X-ray diffraction and ultraviolet spectroscopic analysis of Terminalia bellerica based silver nanoparticles and evaluation of their antioxidant, catalytic and antibacterial activity. Heliyon 9(6):e16944. https://doi.org/10.1016/j.heliyon.2023.e16944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325. https://doi.org/10.1016/j.jscs.2011.01.015

    Article  CAS  Google Scholar 

  66. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551. https://doi.org/10.1007/s11051-010-9900-y

    Article  CAS  Google Scholar 

  67. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 15:2555–2562. https://doi.org/10.2147/IJN.S246764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Hamida Khatun: methodology, investigation. Shahin Alam: investigation. Md. Abdul Aziz: data curation. Md. Rezaul Karim: writing—review and editing, Formal analysis. Md. Habibur Rahman: writing—review and editing. M. Ahasanur Rabbi: data curation. Md. Rowshanul Habib: conceptualization, supervision, writing original draft.

Corresponding author

Correspondence to Md. Rowshanul Habib.

Ethics declarations

Conflict of interest

The authors declare that none of their known financial conflicts or interpersonal connections could have influenced the work that was published in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatun, H., Alam, S., Aziz, M.A. et al. Plant-assisted green preparation of silver nanoparticles using leaf extract of Dalbergia sissoo and their antioxidant, antibacterial and catalytic applications. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-03029-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-03029-w

Keywords

Navigation