Skip to main content
Log in

Z-scheme ZnFe2O4/CeO2 nanocomposites with enhanced photocatalytic performance under UV light

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The motivation of this work is to identify structural, optical, magnetic properties of ZnFe2O4/CeO2 nanocomposites and their potential use in removal of water-polluting dye. The cost-effective hydrothermal technique was used to synthesize ZnFe2O4/CeO2 nanocomposites of different weight ratio (1:1, 1:2, 1:3, and 1:4). XRD pattern of synthesized samples show two different phases corresponding to ZnFe2O4 and CeO2, respectively. FTIR spectra enlightened Zn–O, Fe–O, and O–Ce–O bonds in synthesized nanocomposites. Further UV–Vis spectroscopy demonstrated that band gap varies from 2.17 to 3.12 eV. This change may be attributed to creation of new sub-band gap energy levels upon addition of wide band gap semiconductor (CeO2). Magnetic investigations showed that pure ZnFe2O4 has greater magnetic character than other synthesized materials, with a maximum magnetization of 1.42 emu/g. HRTEM analysis showed spherical morphology of synthesized samples. In comparison to single metal oxides (ZnFe2O4 and CeO2), maximum photodegradation efficiency of ZnFe2O4/CeO2 (1:4) nanocomposites for Rose Bengal dye was observed to be 95% in 75 min. Furthermore, photocatalytic activity remains unchanged after four runs for this photocatalyst, allowing the reusability of catalysts. In nanocomposites, Ce4+/Ce3+ redox couple and heterojunction interfaces have encouraged electron transport and photo-excited electron–hole recombination which ultimately affects photodegradation efficiency of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

Code availability

Not applicable.

References

  1. X. Sun, Z.B. Ping, Z.F. Dong, K.L. Chen, X.D. Zhu, B. Larry Li, X.Y. Tan, B.K. Zhu, X. Liu, C.C. Zhou, S. Fang, W. Xiong, Resources and environmental costs of China’s rapid economic growth: From the latest theoretic SEEA framework to modeling practice. J Clean Prod. 315, 128126 (2021). https://doi.org/10.1016/j.jclepro.2021.128126

    Article  Google Scholar 

  2. M. Buaisha, S. Balku, Ş Özalp-Yaman, Heavy metal removal investigation in conventional activated sludge systems. Civil Eng J (Iran). 6, 470–477 (2020). https://doi.org/10.28991/cej-2020-03091484

    Article  Google Scholar 

  3. A.R.A. Scharnberg, A.C. de Loreto, A.K. Alves, Optical and structural characterization of Bi2FexNbO7 nanoparticles for environmental applications. Emerg Sci J. 4, 11–17 (2020). https://doi.org/10.28991/esj-2020-01205

    Article  Google Scholar 

  4. G.D. Sharma, P. Balraju, M. Kumar, M.S. Roy, Quasi solid state dye sensitized solar cells employing a polymer electrolyte and xanthene dyes. Mater Sci Eng B Solid State Mater Adv Technol. 162, 32–39 (2009). https://doi.org/10.1016/j.mseb.2009.01.033

    Article  Google Scholar 

  5. G.R. Quadra, J.R. Paranaíba, J. Vilas-Boas, F. Roland, A.M. Amado, N. Barros, R.J.P. Dias, S.J. Cardoso, A global trend of caffeine consumption over time and related-environmental impacts. Environ Pollut. 256, 113343 (2020). https://doi.org/10.1016/j.envpol.2019.113343

    Article  Google Scholar 

  6. C.V. Reddy, K.R. Reddy, V.V.N. Harish, J. Shim, M.V. Shankar, N.P. Shetti, T.M. Aminabhavi, Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrogen Energy. 45, 7656–7679 (2020). https://doi.org/10.1016/J.IJHYDENE.2019.02.144

    Article  Google Scholar 

  7. V.N. Rao, N.L. Reddy, M.M. Kumari, K.K. Cheralathan, P. Ravi, M. Sathish, B. Neppolian, K.R. Reddy, N.P. Shetti, P. Prathap, T.M. Aminabhavi, M.V. Shankar, Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: a review. J Environ Manage. 248, 109246 (2019). https://doi.org/10.1016/j.jenvman.2019.07.017

    Article  Google Scholar 

  8. M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djurišić, W.K. Chan, Photocatalytic activity of metal oxides—the role of holes and OH radicals. Appl Catal B. 107, 150–157 (2011). https://doi.org/10.1016/J.APCATB.2011.07.008

    Article  Google Scholar 

  9. B. Nikravesh, A. Shomalnasab, A. Nayyer, N. Aghababaei, R. Zarebi, F. Ghanbari, UV/Chlorine process for dye degradation in aqueous solution: mechanism, affecting factors and toxicity evaluation for textile wastewater. J Environ Chem Eng. 8, 104244 (2020). https://doi.org/10.1016/J.JECE.2020.104244

    Article  Google Scholar 

  10. R. Koutavarapu, B. Babu, C. Reddy, I.N. Reddy, K.R. Reddy, M.C. Rao, M. Aminabhavi, M. Cho, D. Kim, J. Shim, ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water. J Environ Manag. 265, 110504 (2020). https://doi.org/10.1016/j.jenvman.2020.110504

    Article  Google Scholar 

  11. T. Ahmed, T. Edvinsson, Optical quantum confinement in ultrasmall ZnO and the effect of size on their photocatalytic activity. ACS Appl Mater Interfaces. 124, 6395–6404 (2020). https://doi.org/10.1021/acs.jpcc.9b11229

    Article  Google Scholar 

  12. G. Elango, S. Kumaran, S. Kumar, S. Muthuraja, S.M. Roopan, Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 145, 176–180 (2015). https://doi.org/10.1016/j.saa.2015.03.033

    Article  ADS  Google Scholar 

  13. S. Fang, Y. Xin, L. Ge, C. Han, P. Qiu, L. Wu, Facile synthesis of CeO2 hollow structures with controllable morphology by template-engaged etching of Cu2O and their visible light photocatalytic. J Appl Catal-B Environ 179, 458–467 (2015). https://doi.org/10.1016/j.apcatb.2015.05.051S

    Article  Google Scholar 

  14. C. Reddy, I. Reddy, K. Ravindranadh, K.R. Reddy, D. Kim, J. Shim, Ni-dopant concentration effect of ZrO2 photocatalyst on photoelectrochemical water splitting and efficient removal of toxic organic pollutants, Elsevier. (n.d.). Separation Purification Technol. 252, 117352 (2020). https://doi.org/10.1016/j.seppur.2020.117352

    Article  Google Scholar 

  15. H. Kumari, S. Sonia, R. Ranga, S. Chahal, S. Devi, S. Sharma, S. Kumar, P. Kumar, S. Kumar, A. Kumar, R. Parmar, A review on photocatalysis used for wastewater treatment: dye degradation. Water Air Soil Pollut. 234, 349 (2023). https://doi.org/10.1007/s11270-023-06359-9

    Article  ADS  Google Scholar 

  16. H.K. Sonia, S. Suman, S. Chahal, S. Devi, S. Kumar, P. Kumar, A.K. Kumar, Spinel ferrites/metal oxide nanocomposites for waste water treatment. Appl Phys A Mater Sci Process. 129, 91 (2023). https://doi.org/10.1007/s00339-022-06288-0

    Article  ADS  Google Scholar 

  17. R.A.C. Amoresi, R.C. Oliveira, N.L. Marana, P.B. de Almeida, P.S. Prata, M.A. Zaghete, E. Longo, J.R. Sambrano, A.Z. Simões, CeO2 nanoparticle morphologies and their corresponding crystalline planes for the photocatalytic degradation of organic pollutants. ACS Appl Nano Mater. 2, 6513–6526 (2019). https://doi.org/10.1021/ACSANM.9B01452

    Article  Google Scholar 

  18. T. Tavangar, M. Karimi, M. Rezakazemi, K. Raghava Reddy, T.M. Aminabhavi, Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem Eng J (2019). https://doi.org/10.1016/j.cej.2019.123787

    Article  Google Scholar 

  19. Q. Hu, B. Huang, Y. Li, S. Zhang, Y. Zhang, X. Hua, G. Liu, B. Li, J. Zhou, E. Xie, Z. Zhang, Methanol gas detection of electrospun CeO2 nanofibers by regulating Ce3+/Ce4+ mole ratio via Pd doping Elsevier. (n.d.). Sens Actuators B Chem. 307, 127638 (2020). https://doi.org/10.1016/j.snb.2019.127638

    Article  Google Scholar 

  20. S. Chahal, N. Rani, A. Kumar, P. Kumar, UV-irradiated photocatalytic performance of yttrium doped ceria for hazardous Rose Bengal dye, Elsevier. (n.d.). Appl. Surf. Sci. 493, 87–93 (2019). https://doi.org/10.1016/j.apsusc.2019.06.284

    Article  ADS  Google Scholar 

  21. H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, Z. Wang, Y. Zhao, Q. Tian, C. Wang, Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Adv Colloid Interface Sci (2021). https://doi.org/10.1016/j.cis.2021.102486

    Article  Google Scholar 

  22. M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci. 265, 29–44 (2019). https://doi.org/10.1016/J.CIS.2019.01.003

    Article  Google Scholar 

  23. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, ZnFe2O4 nanocrystals: synthesis and magnetic properties. J. Phys. Chem. C 111, 12274–12278 (2007). https://doi.org/10.1021/jp0732763

    Article  Google Scholar 

  24. K. Kirchberg, Sustainable solar energy conversion with defined ferrite nanostructures Dissertation. 2018.

  25. J. Xie, Q. Wu, D. Zhao, Electrospinning synthesis of ZnFe2O4/Fe3O4/Ag nanoparticle-loaded mesoporous carbon fibers with magnetic and photocatalytic properties. Carbon 50, 800–807 (2012). https://doi.org/10.1016/j.carbon.2011.09.036

    Article  Google Scholar 

  26. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017). https://doi.org/10.1002/adma.201601694

    Article  Google Scholar 

  27. K. Kumari, R.N. Aljawfi, Y.S. Katharria, S. Dwivedi, K.H. Chae, R. Kumar, A. Alshoaibi, P.A. Alvi, S. Dalela, S. Kumar, Study the contribution of surface defects on the structural, electronic structural, magnetic, and photocatalyst properties of Fe: CeO2 nanoparticles. J Electron Spectros Relat Phenomena. 235, 29–39 (2019). https://doi.org/10.1016/j.elspec.2019.06.004

    Article  Google Scholar 

  28. F. Zhu, Q. Ji, Y. Lei, J. Ma, Q. Xiao, Y. Yang, S. Komarneni, Efficient degradation of orange II by core shell CoFe2O4–CeO2 nanocomposite with the synergistic effect from sodium persulfate. Chemosphere. 291, 132765 (2022). https://doi.org/10.1016/j.chemosphere.2021.132765

    Article  ADS  Google Scholar 

  29. S.D. Kulkarni, S. Kumbar, S.G. Menon, K.S. Choudhari, C. Santhosh, Magnetically separable core-shell ZnFe2O4@ZnO nanoparticles for visible light photodegradation of methyl orange. Mater Res Bull. 77, 70–77 (2016). https://doi.org/10.1016/j.materresbull.2016.01.022

    Article  Google Scholar 

  30. M. Mataji, M. Ghorbani, M.P. Gatabi, Structural, optical and magnetic properties of novel ZnFe2O4/ZrO2 mixed metal oxide nanocomposite synthesized by hydrothermal technique. J Alloys Compd. 757, 298–309 (2018). https://doi.org/10.1016/j.jallcom.2018.05.050

    Article  Google Scholar 

  31. X. Chen, Y. Liu, X. Xia, L. Wang, Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2,4-dinitrophenol. Appl Surf Sci. 407, 470–478 (2017). https://doi.org/10.1016/j.apsusc.2017.02.198

    Article  ADS  Google Scholar 

  32. R. Rameshbabu, R. Ramesh, S. Kanagesan, A. Karthigeyan, S. Ponnusamy, Synthesis and study of structural, morphological and magnetic properties of ZnFe2O4 nanoparticles. J Supercond Nov Magn. 27, 1499–1502 (2014). https://doi.org/10.1007/s10948-013-2466-z

    Article  Google Scholar 

  33. V.R. Raja, A. Karthika, S.L. Kirubahar, A. Suganthi, M. Rajarajan, Sonochemical synthesis of novel ZnFe2O4/CeO2 heterojunction with highly enhanced visible light photocatalytic activity, Elsevier. (n.d.). Solid State Ionics 332, 55–62 (2019). https://doi.org/10.1016/j.ssi.2018.12.016

    Article  Google Scholar 

  34. J.D. Vidales, A. López-Delgado, E. Villa, F.A. Lopez, The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature, Elsevier. (n.d.). J. Alloy. Compd. 287, 276–283 (1999). https://doi.org/10.1016/S0925-8388(99)00069-9

    Article  Google Scholar 

  35. F. Lopez, A. Lopez-Delgado, J.L.M.D. Vidales, E. Villa, Synthesis of nanocrystalline zinc ferrite powders from sulphuric pickling waste water, Elsevier. (n.d.). J. Alloy. Compd. 265, 291–296 (1998). https://doi.org/10.1016/S0925-8388(97)00282-X

    Article  Google Scholar 

  36. P.D. Szuromi, Handbook of nanostructured materials and nanotechnology. Science. 288, 1596 (2000)

    Article  Google Scholar 

  37. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1995). https://doi.org/10.1103/PHYSREV.99.1727

    Article  ADS  Google Scholar 

  38. S. Kumar, T.K. Song, S. Gautam, K.H. Chae, S.S. Kim, K.W. Jang, Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles. Mater Res Bull. 66, 76–82 (2015). https://doi.org/10.1016/j.materresbull.2015.02.020

    Article  Google Scholar 

  39. A. Phuruangrat, S. Thongtem, T. Thongtem, Microwave-assisted hydrothermal synthesis and characterization of CeO2 nanowires for using as a photocatalytic material. Mater Lett. 196, 61–63 (2017). https://doi.org/10.1016/j.matlet.2017.03.013

    Article  Google Scholar 

  40. R. Ramadan, M.M. El-Masry, Comparative study between CeO2/ZnO and CeO2/SiO2 nanocomposites for (Cr6+) heavy metal removal. Appl Phys A Mater Sci Process. (2021). https://doi.org/10.1007/s00339-021-05037-z

    Article  Google Scholar 

  41. T. Alammar, H. Noei, Y. Wang, W. Grünert, A.V. Mudring, Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation. ACS Sustain Chem Eng. 3, 42–54 (2015). https://doi.org/10.1021/sc500387k

    Article  Google Scholar 

  42. M. Sridharan, P. Kamaraj, J. Arockiaselvi, T. Pushpamalini, P.A. Vivekanand, S. Hari Kumar, Synthesis, characterization and evaluation of biosynthesized cerium oxide nanoparticle for its anticancer activity on breast cancer cell (MCF 7). Mater Today Proc 36(4), 914–919 (2020). https://doi.org/10.1016/j.matpr.2020.07.031

    Article  Google Scholar 

  43. C. Peltre, S. Bruun, C. Du, I.K. Thomsen, L.S. Jensen, Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy. Soil Biol Biochem. 77, 41–50 (2014). https://doi.org/10.1016/j.soilbio.2014.06.022

    Article  Google Scholar 

  44. W.B. White, B.A. De Angelis, Interpretation of the vibrational spectra of spinels. Spectrochim. Acta, Part A 23, 985–995 (1967). https://doi.org/10.1016/0584-8539(67)80023-0

    Article  ADS  Google Scholar 

  45. V. Blanco-Gutiérrez, A. Andrada-Chacón, J. Sánchez-Benítez, E. Urones-Garrote, R. Sáez-Puche, M.J. Torralvo-Fernández, Superparamagnetic behavior at room temperature through crystal chemistry modification and particle assembly formation: zinc and nickel ferrite systems. J. Phys. Chem. C 123, 16973–16981 (2019). https://doi.org/10.1021/acs.jpcc.9b01898

    Article  Google Scholar 

  46. D. Peeters, D.H. Taffa, M.M. Kerrigan, A. Ney, N. Jöns, D. Rogalla, S. Cwik, H.W. Becker, M. Grafen, A. Ostendorf, C.H. Winter, S. Chakraborty, M. Wark, A. Devi, Photoactive zinc ferrites fabricated via conventional CVD approach. ACS Sustain Chem Eng. 5, 2917–2926 (2017). https://doi.org/10.1021/acssuschemeng.6b02233

    Article  Google Scholar 

  47. S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. Cryst Growth Des. 7, 950–955 (2007). https://doi.org/10.1021/CG0608864

    Article  Google Scholar 

  48. J.E. Spanier, R.D. Robinson, F. Zhang, S.-W. Chan, I.P. Herman, Size-dependent properties of nanoparticles as studied by Raman scattering. APS. 64, 245407 (2001). https://doi.org/10.1103/PhysRevB.64.245407

    Article  Google Scholar 

  49. Y. Lee, G. He, A.J. Akey, R. Si, M. Flytzani-Stephanopoulos, I.P. Herman, Raman analysis of mode softening in nanoparticle CeO2-δ and Au-CeO2-δ during CO oxidation. J Am Chem Soc. 133, 12952–12955 (2011). https://doi.org/10.1021/JA204479J

    Article  Google Scholar 

  50. A. Filtschew, K. Hofmann, C. Hess, Ceria and its defect structure: new insights from a combined spectroscopic approach. J. Phys. Chem. C 120, 6694–6703 (2016). https://doi.org/10.1021/ACS.JPCC.6B00959

    Article  Google Scholar 

  51. G.A. Kourouklis, A. Jayaraman, G.F. Espinosa, High-pressure Raman study of CeO2 to 35 GPa and pressure-induced phase transformation from the fluorite structure. Phys. Rev. B 37, 4250–4253 (1988). https://doi.org/10.1103/physrevb.37.4250

    Article  ADS  Google Scholar 

  52. F. Li, H. Wang, L. Wang, J. Wang, Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method. J Magn Magn Mater. 309, 295–299 (2007). https://doi.org/10.1016/j.jmmm.2006.07.012

    Article  ADS  Google Scholar 

  53. M. Mozaffari, M. EghbaliArani, J. Amighian, The effect of cation distribution on magnetization of ZnFe2O4 nanoparticles. J Magn Magn Mater. 322, 3240–3244 (2010). https://doi.org/10.1016/J.JMMM.2010.05.053

    Article  ADS  Google Scholar 

  54. X. Huang, Y. Qin, Y. Ma, Y. Chen, Preparation and electromagnetic properties of nanosized ZnFe2O4 with various shapes. Ceram Int. 45(18389), 18397 (2019). https://doi.org/10.1016/j.ceramint.2019.06.054

    Article  Google Scholar 

  55. P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites, Elsevier. (n.d.). Mater. Chem. Phys. 116, 207–213 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.011

    Article  Google Scholar 

  56. E.C. Stoner, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc A Math, Phys Eng Sci 240(826), 599–642 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  ADS  MATH  Google Scholar 

  57. K. Kombaiah, J. Vijaya, L. Kennedy, M. Bououdina, Optical, magnetic and structural properties of ZnFe2O4 nanoparticles synthesized by conventional and microwave assisted combustion method: investigation. Optik 129, 57–68 (2017). https://doi.org/10.1016/j.ijleo.2016.10.058

    Article  ADS  Google Scholar 

  58. A.A. Farghali, M.H. Khedr, S.I. El-Dek, A.E. Megahed, Synthesis and multifunctionality of (CeO2-NiO) nanocomposites synthesized via sonochemical technique. Ultrason Sonochem. 42, 556–566 (2018). https://doi.org/10.1016/J.ULTSONCH.2017.12.011

    Article  Google Scholar 

  59. H.A. Al-Shwaiman, C. Akshhayya, A. Syed, A.H. Bahkali, A.M. Elgorban, A. Das, R.S. Varma, S.S. Khan, Fabrication of intimately coupled CeO2/ZnFe2O4 nano-heterojunction for visible-light photocatalysis and bactericidal application. Mater Chem Phys. 279, 125759 (2022). https://doi.org/10.1016/j.matchemphys.2022.125759

    Article  Google Scholar 

  60. C.E. Arinzechukwu, S.O. Aisida, A. Agbogu, I. Ahmad, F.I. Ezema, Polyethylene glycol capped nickel–zinc ferrite nanocomposites: structural, optical and magnetic properties suitable for hyperthermia applications. Appl Phys A Mater Sci Process. 128, 1–9 (2022). https://doi.org/10.1007/s00339-022-06248-8

    Article  ADS  Google Scholar 

  61. W.A. Aboutaleb, R.A. El-Salamony, Effect of Fe2O3-CeO2 nanocomposite synthesis method on the Congo red dye photodegradation under visible light irradiation. Mater Chem Phys. 236, 121724 (2019). https://doi.org/10.1016/j.matchemphys.2019.121724

    Article  Google Scholar 

  62. M. Chandrika, A.V. Ravindra, C. Rajesh, S.D. Ramarao, S. Ju, Studies on structural and optical properties of nano ZnFe2O4 and ZnFe2O4-TiO2 composite synthesized by co-precipitation route. Mater Chem Phys. 230, 107–113 (2019). https://doi.org/10.1016/J.MATCHEMPHYS.2019.03.059

    Article  Google Scholar 

  63. V.G. Andreev, S.B. Mens’hova, A.Y. Kirina, S.B. Bibikov, V.M. Prokhorov, Study of the influence of doping admixtures on the microstructure and properties of radio-absorbing Mg-Zn ferrite materials. Nanotechnol Russ. 11, 535–542 (2016). https://doi.org/10.1134/S1995078016050025

    Article  Google Scholar 

  64. G.K. Pradhan, S. Martha, K.M. Parida, Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique. ACS Appl Mater Interfaces. 4, 707–713 (2012). https://doi.org/10.1021/AM201326B

    Article  Google Scholar 

  65. S.S. Suman, A. Ankita, N. Kumar, S. Kataria, P.K. Kumar, Photocatalytic activity of α-Fe2O3@CeO2 and CeO2@α-Fe2O3 core-shell nanoparticles for degradation of Rose Bengal dye. J Environ Chem Eng. 9, 106266 (2021). https://doi.org/10.1016/j.jece.2021.106266

    Article  Google Scholar 

  66. G. Cynthia Jemima, S. Swarnavalli, S. Dinakaran, G.M.B. Krishnaveni, Rapid one pot synthesis of Ag/ZnO nanoflowers for photocatalytic degradation of nitrobenzene. Mater Sci Eng B Solid State Mater Adv Technol. 247, 114376 (2019). https://doi.org/10.1016/j.mseb.2019.06.007

    Article  Google Scholar 

  67. S. Chahal, N. Rani, A. Kumar, P. Kumar, Electronic structure and photocatalytic activity of samarium doped cerium oxide nanoparticles for hazardous rose bengal dye degradation. Vacuum. 172, 109075 (2020). https://doi.org/10.1016/j.vacuum.2019.109075

    Article  ADS  Google Scholar 

  68. S. Chahal, A. Kumar, P. Kumar, Erbium-doped oxygen deficient cerium oxide: bi-functional material in the field of spintronics and photocatalysis. Appl. Nanosci. 10, 1721–1733 (2020). https://doi.org/10.1007/S13204-020-01253-W

    Article  ADS  Google Scholar 

  69. Y. Xu, Q. Liu, M. Xie, S. Huang, H. Xu, H. Li, Synthesis of zinc ferrite/silver iodide composite with enhanced photocatalytic antibacterial and pollutant degradation ability, Elsevier. (n.d.). J. Colloid Interface Sci. 528, 70–81 (2018). https://doi.org/10.1016/j.jcis.2018.05.066

    Article  ADS  Google Scholar 

  70. V. Ramasamy Raja, A. Karthika, S. Lok Kirubahar, A. Suganthi, M. Rajarajan, Sonochemical synthesis of novel ZnFe2O4/CeO2 heterojunction with highly enhanced visible light photocatalytic activity. Solid State Ion. 332, 55–62 (2019). https://doi.org/10.1016/J.SSI.2018.12.016

    Article  Google Scholar 

  71. N. Arul Sabari, D. Mangalaraj, R. Ramachandran, A. NirmalaGrace, J.I. Han, Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J Mater Chem A 3, 15248–15258 (2015). https://doi.org/10.1039/C5TA02630J

    Article  Google Scholar 

  72. Y. Xu, M.S.A. Mineralogist, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Miner. 85, 543–556 (2000). https://doi.org/10.2138/am-2000-0416

    Article  ADS  Google Scholar 

  73. R. Saravanan, S. Joicy, V. Gupta, V. Narayana, A. Stephen, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts, Elsevier. (n.d.). Mater. Sci. Eng., C 33, 4725–4731 (2013). https://doi.org/10.1016/j.msec.2013.07.034

    Article  Google Scholar 

  74. Z. He, H. Yang, J. Su, Y. Xia, X. Fu, L. Wang, L. Kang, Construction of multifunctional dual Z-scheme composites with enhanced photocatalytic activities for degradation of ciprofloxacin. Fuel. 294, 120399 (2021). https://doi.org/10.1016/j.fuel.2021.120399

    Article  Google Scholar 

Download references

Acknowledgements

AK and PK acknowledges Department of Science and Technology (DST) Delhi, for providing experimental support facilities under DST-FIST Research Grant (SR/FST/PS-1/2018/32) and PURSE grant (SR/PURSE/2022/126). Sonia acknowledges University Grant Commission, India for providing research fellowship (UGC Ref. No.: 191620168538 (CSIR-UGC NET JAN. 2020)).

Funding

Funding received from Human Resource Development Group DL0116214341.

Author information

Authors and Affiliations

Authors

Contributions

S: conceptualization, methodology, formal analysis, investigation, writing—original draft, visualization. AK: formal analysis, writing—review and editing. PK: resources, visualization, writing—review and editing, supervision.

Corresponding author

Correspondence to Ashok Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no any conflict of interest on the work presented in the manuscript entitled “ZnFe2O4/CeO2 nanocomposites as an efficient photocatalyst for dye degradation”.

Ethical approval

The authors recognize that the current research has been carried out in an ethically manner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonia, Kumar, A. & Kumar, P. Z-scheme ZnFe2O4/CeO2 nanocomposites with enhanced photocatalytic performance under UV light. Appl. Phys. A 129, 724 (2023). https://doi.org/10.1007/s00339-023-06959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06959-6

Keywords

Navigation