Skip to main content
Log in

Spinel ferrites/metal oxide nanocomposites for waste water treatment

  • Invited Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Spinel ferrites (MFe2O4, M divalent metallic ion) and their nanocomposites with specific metallic oxides (ZnO, TiO2, CeO2) have attracted the interest of researchers for studying the decontamination of wastewater using photocatalysts, due to the fact MFe2O4 nanoparticles (NPs) are stable and handy to separate after being used due to its incredible magnetic behavior. With this background, the latest growth on photocatalytic performances of MFe2O4-based binary nanocomposites have been comprehensively revised. Particularly, a much interest rising on MFe2O4/metal NPs, MFe2O4/metal oxides, MFe2O4/polymers, MFe2O4/carbon-based materials, and MFe2O4/other compounds for the photocatalytic decomposition of dyes. In this review, nanocomposites of MFe2O4 as photocatalysts are discussed in detail. This review paper has explained the advantageous pathway for the generation of free radicals with the help of these catalysts in the presence of visible and UV light. This review sums up that MFe2O4-based nanocomposites with metal oxide have valuable application in purification of water. Nevertheless, their sensible consumption in wastewater treatment plants still needs additional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

Data will be made available on request.

References

  1. M. Kurian, S. Thankachan, Structural diversity and applications of spinel ferrite core - Shell nanostructures- A review. Open Ceram (2021). https://doi.org/10.1016/j.oceram.2021.100179

    Article  Google Scholar 

  2. A. Singh, R.K. Sharma, M. Agrawal, F.M. Marshall, Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 48(2), 611–619 (2010). https://doi.org/10.1016/j.fct.2009.11.041

    Article  Google Scholar 

  3. A. Belghit, S. Merouani, O. Hamdaoui, M. Bouhelassa, S. Al-Zahrani, The multiple role of inorganic and organic additives in the degradation of reactive green 12 by UV/chlorine advanced oxidation process. Environ. Technol. 43(6), 835–847 (2022). https://doi.org/10.1080/09593330.2020.1807609

    Article  Google Scholar 

  4. H. Bendjama, S. Merouani, O. Hamdaoui, M. Bouhelassa, Efficient degradation method of emerging organic pollutants in marine environment using UV/periodate process: case of chlorazol black. Mar. Pollut. Bull. 126, 557–564 (2018). https://doi.org/10.1016/J.MARPOLBUL.2017.09.059

    Article  Google Scholar 

  5. C.G. Joseph, Y.H. Taufiq-Yap, E. Letshmanan, V. Vijayan, heterogeneous photocatalytic chlorination of methylene blue Using a newly synthesized TiO2-SiO2 photocatalyst. Catalysts 12(2), 156 (2022). https://doi.org/10.3390/CATAL12020156

    Article  Google Scholar 

  6. M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djurišić, W.K. Chan, Photocatalytic activity of metal oxides—The role of holes and OH radicals. Appl. Catal. B 107(1–2), 150–157 (2011). https://doi.org/10.1016/J.APCATB.2011.07.008

    Article  Google Scholar 

  7. B. Nikravesh, A. Shomalnasab, A. Nayyer, N. Aghababaei, R. Zarebi, F. Ghanbari, UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater. J. Environ. Chem. Eng. 8(5), 104244 (2020). https://doi.org/10.1016/J.JECE.2020.104244

    Article  Google Scholar 

  8. S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/AAC6EA

    Article  Google Scholar 

  9. C.Y. Hsiao, C.L. Lee, D.F. Ollis, Heterogeneous photocatalysis: Degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst. J. Catal. 82(2), 418 (1983). https://doi.org/10.1016/0021-9517(83)90208-7

    Article  Google Scholar 

  10. M. Ikram, M. Rashid, A. Haider, S. Naz, J. Haider, A. Raza, M.T. Ansar, M.K. Uddin, N.M. Ali, S.S. Ahmed, M. Imran, S. Dilpazir, Q. Khan, M. Maqbool, A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustain. Mater. Technol. 30, e00343 (2021). https://doi.org/10.1016/J.SUSMAT.2021.E00343

    Article  Google Scholar 

  11. Y. Feng, X. Jiang, E. Ghafari, B. Kucukgok, C. Zhang, I. Ferguson, N. Lu, Metal oxides for thermoelectric power generation and beyond. Adv. Compos. Hybrid Mater. 1(1), 114–126 (2018). https://doi.org/10.1007/S42114-017-0011-4

    Article  Google Scholar 

  12. J. Xing, W.Q. Fang, H.J. Zhao, H.G. Yang, Inorganic photocatalysts for overall water splitting. Chem. Asian J. 7(4), 642–657 (2012). https://doi.org/10.1002/ASIA.201100772

    Article  Google Scholar 

  13. M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1, 607 (2019). https://doi.org/10.1007/s42452-019-0592-3

    Article  Google Scholar 

  14. Y. Wu, Y. Wang, W. Yang, Q. Song, Q. Chen, G. Qu, J. Han, S. Xiao, Self-cleaning titanium dioxide metasurfaces with UV irradiation. Laser Photonics Rev. 15(2), 2000330 (2021). https://doi.org/10.1002/LPOR.202000330

    Article  ADS  Google Scholar 

  15. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3, 275–290 (2019). https://doi.org/10.1016/J.BIORI.2019.09.001

    Article  Google Scholar 

  16. Z. Xie, Y.P. Peng, L. Yu, C. Xing, M. Qiu, J. Hu, H. Zhang, Solar-inspired water purification based on emerging 2d materials: status and challenges. Solar RRL 4(3), 1900400 (2019). https://doi.org/10.1002/SOLR.201900400

    Article  Google Scholar 

  17. L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy. Mater. 8(16), 1702149 (2018a). https://doi.org/10.1002/AENM.201702149.

    Article  Google Scholar 

  18. M. Gao, L. Zhu, C.K. Peh, W. Ho,Solar Absorber Material and System Designs for Photothermal Water Vaporization towards Clean Water and Energy Production. Energy Environ. Sci 12, 841 (2019). https://doi.org/10.1039/c8ee01146j

    Article  Google Scholar 

  19. X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29(5), 1604031 (2017). https://doi.org/10.1002/ADMA.201604031

    Article  Google Scholar 

  20. M.Q. Yang, M. Gao, M. Hong, G.W. Ho, Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 30(47), 1802894 (2018). https://doi.org/10.1002/ADMA.201802894

    Article  Google Scholar 

  21. H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, H. Peng, Z. Liu, Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29(38), 1702590 (2017). https://doi.org/10.1002/ADMA.201702590

    Article  Google Scholar 

  22. Y. Yang, R. Zhao, T. Zhang, K. Zhao, P. Xiao, Y. Ma, P.M. Ajayan, G. Shi, Y. Chen, Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1), 829–835 (2018). https://doi.org/10.1021/ACSNANO.7B08196

    Article  Google Scholar 

  23. L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5(3), 323–343 (2018b). https://doi.org/10.1039/C7MH01064H

    Article  Google Scholar 

  24. H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139(45), 16235–16247 (2017). https://doi.org/10.1021/JACS.7B07818/SUPPL_FILE/JA7B07818_SI_001.PDF

    Article  Google Scholar 

  25. H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/ACS.NANOLETT.6B04339

    Article  ADS  Google Scholar 

  26. H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D Tantalum Carbide (MXene). Adv. Mater. 30(4), 1703284 (2018). https://doi.org/10.1002/ADMA.201703284

    Article  Google Scholar 

  27. Xie X, Xue Y, Li L, Chen S, Nie Y, Ding W, Wei Z. (2014). Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Pubs.Rsc.Org. Retrieved Sept. 29, 2022, from https://pubs.rsc.org/en/content/articlehtml/2014/nr/c4nr02080

  28. D.C. Geng, X.X. Zhao, Z.X. Chen, W.W. Sun, W. Fu, J.Y. Chen, W. Liu, W. Zhou, K.P. Loh, Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/ADMA.201700072

    Article  Google Scholar 

  29. C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, K. Sun, Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2017.08.013

    Article  Google Scholar 

  30. R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/ACSNANO.6B08415

    Article  Google Scholar 

  31. Y. Zhang, S.-J. Park, Formation of hollow MoO3/SnS2 heterostructured nanotubes for efficient lightdriven hydrogen peroxide production. J. Mater. Chem. A. 6(41), 20304–20312 (2018) https://pubs.rsc.org/en/content/articlehtml/2018/ta/c8ta08385a (Accessed 30 Sept 30 2022)

    Article  Google Scholar 

  32. J. Zhao, Y. Yang, C. Yang, Y. Tian, Y. Han, J. Liu, X. Yin, W. Que, A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 6(33), 16196–16204 (2018). https://doi.org/10.1039/C8TA05569F

    Article  Google Scholar 

  33. Z. Guo, G. Wang, X. Ming, T. Mei, J. Wang, J. Li, J. Qian, X. Wang, PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization. ACS Appl. Mater. Interfaces 10, 24583–24589 (2018). https://doi.org/10.1021/ACSAMI.8B08019/SUPPL_FILE/AM8B08019_SI_001

    Article  Google Scholar 

  34. X. Ren, Z. Li, H. Qiao, W. Liang, H. Liu, F. Zhang, X. Qi, Y. Liu, Z. Huang, D. Zhang, J. Li, J. Zhong, H. Zhang, Few-layer antimonene nanosheet: a metal-free bifunctional electrocatalyst for effective water splitting. ACS Appl. Energy Mater. 2(7), 4774–4781 (2019). https://doi.org/10.1021/ACSAEM.9B00423

    Article  Google Scholar 

  35. Yu M, Zhou S, Wang Z, Zhao J, Qiu J. (2018). Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Elsevier. Retrieved Sept. 29, 2022, from https://www.sciencedirect.com/science/article/pii/S221128551730770

  36. T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution, vol. 55 (Wiley Online Library, Hoboken, 2015), pp.1138–1142

    Google Scholar 

  37. S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen, J. Roscow, Y. Zhang, Z. Lin, R.D.K. Misra, J. Li, P. Zhang, H. Zhang, Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 77, 105080 (2020). https://doi.org/10.1016/J.NANOEN.2020.105080

    Article  Google Scholar 

  38. Y. Han, Y. Chen, R. Fan, Z. Li, Zou, | Zhigang., Promotion effect of metal phosphides towards electrocatalytic and photocatalytic water splitting. EcoMat 3(3), e12097 (2021). https://doi.org/10.1002/EOM2.12097

    Article  Google Scholar 

  39. P. Nakhanivej, X. Yu, SK. Park, S. Kim, JY. Hong, HJ. Kim, W. Lee, JY. Hwang, JE. Yang, C. Wolverton, J. Kong, Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nature.Com. (2019) Retrieved Sept. 29, 2022, from https://www.nature.com/articles/s41563-018-0230-2

  40. B. Zhang, T. Fan, N. Xie, G. Nie, H. Zhang, Versatile applications of metal single-atom @ 2D material nanoplatforms. Adv. Sci. 6(21), 1901787 (2019). https://doi.org/10.1002/ADVS.201901787

    Article  Google Scholar 

  41. S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M.N. Banis, R. Li, S. Ye, S. Knights, G.A. Botton, T.K. Sham, X. Sun, Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3(1), 1–9 (2013). https://doi.org/10.1038/srep01775

    Article  Google Scholar 

  42. Z.B. Khalid, M. Nasrullah, A. Nayeem, Z.A. Wahid, L. Singh, S. Krishnan, Application of 2D graphene-based nanomaterials for pollutant removal from advanced water and wastewater treatment processes ACS Symp. Ser. 1353, 191–217 (2020). https://doi.org/10.1021/BK-2020-1353.CH009

    Article  Google Scholar 

  43. Y. Ye, Z. Zang, T. Zhou, F. Dong, S. Lu, X. Tang, W. Wei, Y. Zhang, Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. J. Catal. 357, 100–107 (2018). https://doi.org/10.1016/j.jcat.2017.11.002

    Article  Google Scholar 

  44. H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3), 2693–2703 (2012). https://doi.org/10.1021/NN300082K

    Article  Google Scholar 

  45. Z. Sun, S. Fang, Y.H. Hu, 3D graphene materials: from understanding to design and synthesis control. Chem. Rev. 120(18), 10336–10453 (2020). https://doi.org/10.1021/ACS.CHEMREV.0C00083

    Article  Google Scholar 

  46. W. Han, C. Zang , Z. Huang,H. Zhang, L. Ren, X. Qi, J. Zhong, Enhanced photocatalytic activities of three-dimensional graphene-based aerogel embedding TiO2 nanoparticles and loading MoS2 nanosheets as Co. Elsevier. (2014) Retrieved Sept 28, 2022, from https://www.sciencedirect.com/science/article/pii/S0360319914025646

  47. Y. Xu, Q. Wu, Y. Sun, H. Bai, G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12), 7358–7362 (2010). https://doi.org/10.1021/NN1027104/SUPPL_FILE/NN1027104_SI_001.PDF

    Article  Google Scholar 

  48. M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, One-dimensional TiO2 Nanotube photocatalysts for solar water splitting. Adv. Sci. 4(1), 1600152 (2017). https://doi.org/10.1002/ADVS.201600152

    Article  Google Scholar 

  49. Widanarto W, Sahar MR, Ghoshal SK, Arifin R, Rohani MS, Hamzah K. (2013). Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass. Elsevier. Retrieved June 21, 2022, from https://www.sciencedirect.com/science/article/pii/S0304885312007305

  50. S. Sendhilnathan, P.I. Rajan, T. Adinaveen, Synthesis and characterization of NiFe2O4 nanoparticles for the enhancement of direct sunlight photocatalytic degradation of methyl orange. J. Supercond. Novel Magn. 31(10), 3315–3322 (2018). https://doi.org/10.1007/S10948-018-4601-3

    Article  Google Scholar 

  51. R. Sharma, S. Bansal, S. Singhal, Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv. 5(8), 6006–6018 (2015). https://doi.org/10.1039/C4RA13692F

    Article  ADS  Google Scholar 

  52. S. Ahmed, Z. Ahmad, Development of hexagonal nanoscale nickel ferrite for the removal of organic pollutant via Photo-Fenton type catalytic oxidation process. Environ. Nanotechnol. Monit. Manag. 14, 100321 (2020). https://doi.org/10.1016/J.ENMM.2020.100321

    Article  Google Scholar 

  53. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res. 8(3–4), 501 (2004). https://doi.org/10.1016/s1093-0191(03)00032-7

    Article  Google Scholar 

  54. B. Ohtani, Photocatalysis A to Z-What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C: Photochem. Rev. 11(4), 157–178 (2010). https://doi.org/10.1016/j.jphotochemrev.2011.02.001

    Article  Google Scholar 

  55. E. Pelizzetti, C. Minero, Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles. Elect. Acta. 38(1), 47 (1993). https://doi.org/10.1016/0013-4686(93)80009-o

    Article  Google Scholar 

  56. T. Leijtens, KA. Bush, R. Prasanna, MD. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature.Com. (2018) Retrieved Sept. 29, 2022, from https://www.nature.com/articles/s41560-018-0190-4

  57. H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, L. Pedesseau, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature. 536(7616), 312–316 (2016)

    Article  ADS  Google Scholar 

  58. G. Zhou, Z. Liu, M. Molokeev, Z. Xiao, et al., Manipulation of Cl/Br transmutation in zero-dimensional Mn2+ based metal halides toward tunable photoluminescence and thermal quenching behaviors. J. Mater. Chem. C. 9, 2047–2053 (2021). https://pubs.rsc.org/en/content/articlehtml/2021/tc/d0tc05137c. (Accessed 8 Dec 2022)

    Article  Google Scholar 

  59. S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar, Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28(32), 6804–6834 (2016). https://doi.org/10.1002/ADMA.201600669

    Article  Google Scholar 

  60. Yakunin S, Protesescu L, Krieg F, Bodnarchuk MI, Nedelcu G, Humer M, De Luca G, Fiebig M, Heiss W, Kovalenko MV. (2015). Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature.Com. Retrieved Sept. 29, 2022, from https://www.nature.com/articles/ncomms9056

  61. L. Zhang, X. Yang, Q. Jiang, P. Wang et al., Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature.Com. 8(1), 1–8 (2017). https://www.nature.com/articles/ncomms15640. (Accessed 29 Sep 2022)

  62. D. Yue, T. Zhang, T. Wang, X. Yan, C. Guo, X. Qian, Y. Zhao, Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H2 generation. EcoMat (2020). https://doi.org/10.1002/EOM2.12015

    Article  Google Scholar 

  63. Y.C. Chen, H.L. Chou, J.C. Lin, Y.C. Lee, C.W. Pao, J.L. Chen, C.C. Chang, R.Y. Chi, T.R. Kuo, C.W. Lu, D.Y. Wang, Enhanced luminescence and stability of cesium lead halide perovskite CsPbX3 nanocrystals by Cu2+ -assisted anion exchange reactions. J. Phys. Chem. C 123(4), 2353–2360 (2019). https://doi.org/10.1021/ACS.JPCC.8B11535

    Article  Google Scholar 

  64. T.T. Xuan, J.Q. Liu, R.J. Xie, H.L. Li, Z. Sun, Microwave-assisted synthesis of CdS/ZnS: Cu quantum dots for white light-emitting diodes with high color rendition. Chem. Mater. 27(4), 1187–1193 (2015). https://doi.org/10.1021/CM503770W/SUPPL_FILE/CM503770W_SI_001.PDF

    Article  Google Scholar 

  65. M.H. Futscher, M.K. Gangishetty, D.N. Congreve, B. Ehrler, Manganese Doping Stabilizes Perovskite Light-Emitting Diodes by Reducing Ion Migration. ACS Appl. Electron. Mater. 2(6), 1522–1528 (2020). https://doi.org/10.1021/ACSAELM.0C00125

    Article  Google Scholar 

  66. S. Paul, E. Bladt, A.F. Richter, M. Döblinger, Y. Tong, H. Huang, A. Dey, S. Bals, T. Debnath, L. Polavarapu, J. Feldmann, Manganese-doping-induced quantum confinement within host perovskite nanocrystals through ruddlesden-popper defects. Angew. Chem. Int. Ed. 59(17), 6794–6799 (2020). https://doi.org/10.1002/ANIE.201914473

    Article  Google Scholar 

  67. P. Song, B. Qiao, D. Song, J. Cao, Z. Shen, Z. Xu, S. Zhao, S. Wageh, A. Al-Ghamdi, Modifying the crystal field of CsPbCl3:Mn2+ nanocrystals by co-doping to enhance its red emission by a hundredfold. ACS Appl. Mater. Interfaces 12(27), 30711–30719 (2020). https://doi.org/10.1021/ACSAMI.0C07655

    Article  Google Scholar 

  68. B. Su, G. Zhou, J. Huang, E. Song, A. Nag, Z. Xia, Mn2+ doped metal halide perovskites: structure, photoluminescence, and application. Laser Photonics Rev. 15(1), 2000334 (2021). https://doi.org/10.1002/LPOR.202000334

    Article  ADS  Google Scholar 

  69. L. Jaswal, B. Singh, Ferrite materials: a chronological review. J. Integr. Sci. Technol. 2(2), 69–71 (2014)

    Google Scholar 

  70. V.S. Kirankumar, S. Sumathi, A review on photodegradation of organic pollutants using spinel oxide. Mater. Today Chem. 18, 100355 (2020). https://doi.org/10.1016/J.MTCHEM.2020.100355

    Article  Google Scholar 

  71. R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, E. Longo, Monoferrite BaFe2O4 applied as ceramic pigment. Ceram. Int. 33(4), 521–525 (2007). https://doi.org/10.1016/J.CERAMINT.2005.10.018

    Article  Google Scholar 

  72. D. Levy, V. Diella, M. Dapiaggi, A. Sani, M. Gemmi, A. Pavese, Equation of state, structural behaviour and phase diagram of synthetic MgFe2O4, as a function of pressure and temperature. Phys. Chem. Miner. 31(2), 122–129 (2004). https://doi.org/10.1007/S00269-004-0380-4

    Article  ADS  Google Scholar 

  73. D.H. Taffa, R. Dillert, A.C. Ulpe, K.C.L. Bauerfeind, T. Bredow, D.W. Bahnemann, M. Wark, Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3−xO4) for water splitting: a mini-review. J. Photon. Energy 7(1), 012009 (2016). https://doi.org/10.1117/1.JPE.7.012009

    Article  Google Scholar 

  74. A.A. Tahir, K.G.U. Wijayantha, Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes. J. Photochem. Photobiol. A 216(2–3), 119–125 (2010). https://doi.org/10.1016/J.JPHOTOCHEM.2010.07.032

    Article  Google Scholar 

  75. S. Singhal, R. Sharma, C. Singh, S. Bansal, Enhanced photocatalytic degradation of methylene blue using ZnFe2O4/MWCNT composite synthesized by hydrothermal method. Indian J. Mater. Sci. (2013). https://doi.org/10.1155/2013/356025

    Article  Google Scholar 

  76. M.S. Antonious, M. Etman, M. Guyot, T. Merceron, Photoelectrochemical characteristics of p- and n- type polycrystalline Ni-ferrite electrodes in aqueous solutions. Mater. Res. Bull. 21(12), 1515–1523 (1986). https://doi.org/10.1016/0025-5408(86)90093-0

    Article  Google Scholar 

  77. K. Dileep, B. Loukya, N. Pachauri, A. Gupta, R. Datta, Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. J. Appl. Phys. 116(10), 103505 (2014). https://doi.org/10.1063/1.4895059

    Article  ADS  Google Scholar 

  78. R. Dom, R. Subasri, K. Radha, P.H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun. 151(6), 470–473 (2011). https://doi.org/10.1016/J.SSC.2010.12.034

    Article  ADS  Google Scholar 

  79. C.G. Ramankutty, S. Sugunan, Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Appl. Catal. A 218(1–2), 39–51 (2001). https://doi.org/10.1016/S0926-860X(01)00610-X

    Article  Google Scholar 

  80. R. Bayat, P. Derakhshi, R. Rahimi, A.A. Safekordi, M. Rabbani, A magnetic ZnFe2O4/ZnO/perlite nanocomposite for photocatalytic degradation of organic pollutants under LED visible light irradiation. Solid State Sci (2019). https://doi.org/10.1016/j.solidstatesciences.2018.12.015

    Article  Google Scholar 

  81. S. Perumbilavil, A. López-Ortega, G.K. Tiwari, J. Nogués, T. Endo, R. Philip, enhanced ultrafast nonlinear optical response in ferrite core/shell nanostructures with excellent optical limiting performance. Small 14(6), 1701001 (2018). https://doi.org/10.1002/smll.201701001

    Article  Google Scholar 

  82. J. Zheng, Y. Wu, Q. Zhang, Y. Li, C. Wang, Y. Zhou, Direct liquid phase deposition fabrication of waxberry-like magnetic Fe3O4@TiO2 core-shell microspheres. Mater. Chem. Phys. 181, 391–396 (2016). https://doi.org/10.1016/j.matchemphys.2016.06.074

    Article  Google Scholar 

  83. V.E. Novala, J.G. Carriazo, Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Mater. Res. (2019). https://doi.org/10.1590/1980-5373-MR-2018-0660

    Article  Google Scholar 

  84. H.A. Al-Shwaiman, C. Akshhayya, A. Syed, A.H. Bahkali, A.M. Elgorban, A. Das, R.S. Varma, S.S. Khan, Fabrication of intimately coupled CeO2/ZnFe2O4 nano-heterojunction for visible-light photocatalysis and bactericidal application. Mater. Chem. Phys. 279, 125759 (2022). https://doi.org/10.1016/J.MATCHEMPHYS.2022.125759

    Article  Google Scholar 

  85. A. Allafchian, S.A.H. Jalali, H. Bahramian, H. Ahmadvand, Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite. J. Magn. Magn. Mater. 404(14), 20 (2016). https://doi.org/10.1016/j.jmmm.2015.12.015

    Article  ADS  Google Scholar 

  86. M. Khatami, H.Q. Alijani, M.S. Nejad, R.S. Varma, Core@shell nanoparticles: greener synthesis using natural plant products. Appl. Sci. 8(3), 411 (2018). https://doi.org/10.3390/app8030411

    Article  Google Scholar 

  87. M. Khatami, H.Q. Alijani, I. Sharifi, Biosynthesis of bimetallic and core-shell nanoparticles: their biomedical applications - A review. IET Nanobiotechnol. 12(7), 879–887 (2018). https://doi.org/10.1049/IET-NBT.2017.0308

    Article  Google Scholar 

  88. H. Das, N. Debnath, T. Arai, T. Kawaguchi, N. Sakamoto, K. Shinozaki, H. Suzuki, N. Wakiya, Superparamagnetic magnesium ferrite/silica core-shell nanospheres: a controllable SiO2 coating process for potential magnetic hyperthermia application. Adv. Powder Technol. 30(12), 3171–3181 (2019). https://doi.org/10.1016/J.APT.2019.09.026

    Article  Google Scholar 

  89. Y.W. Kim, H.S. Park, Microstructural and magnetic characterization of iron oxide nanoparticles fabricated by pulsed wire evaporation. Electron. Mater. Lett. 15, 665–672 (2019). https://doi.org/10.1007/S13391-019-00164-5

    Article  ADS  Google Scholar 

  90. M.H. Khedr, M. Bahgat, W.M.A. el Rouby, Synthesis, magnetic properties and photocatalytic activity of CuFe2O4/MgFe2O4 and MgFe2O4/CuFe2O4 core/shell nanoparticles. Mater. Technol. 23(1), 27–31 (2008). https://doi.org/10.1179/175355508X266872

    Article  ADS  Google Scholar 

  91. S. Singh, A. Kumar, N. Kataria , S. Kumar, P. Kumar, Photocatalytic activity of α-Fe2O3@ CeO2 and CeO2@ α-Fe2O3 core-shell nanoparticles for degradation of Rose Bengal dye. Elsevier. (2021). Retrieved Sept. 29, 2022, from https://www.sciencedirect.com/science/article/pii/S2213343721012434

  92. U. Salazar-Kuri, J.O. Estevez, N.R. Silva-González, U. Pal, M.E. Mendoza, Structure and magnetic properties of the Co1-xNixFe2O4-BaTiO3 core-shell nanoparticles. Elsevier (2017). https://doi.org/10.1016/j.jmmm.2017.06.126

    Article  Google Scholar 

  93. L. Zhang, Z. Li, Synthesis and characterization of SrFe12O19/CoFe2O4 nanocomposites with core-shell structure. J. Alloys. Compd. 469, 422–426 (2009). https://doi.org/10.1016/j.jallcom.2008.01.152

    Article  Google Scholar 

  94. V. Daboin, S. Briceño, J. Suárez, G. Gonzalez, Effect of the dispersing agent on the structural and magnetic properties of CoFe2O4/SiO2 nanocomposites. Elsevier. (2018). Retrieved Sept. 29, 2022, from https://www.sciencedirect.com/science/article/pii/S0304885317314944

  95. J. Nonkumwong, P. Pakawanit, A. Wipatanawin, P. Jantaratana , S. Ananta , L. Srisombat, Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles. Elsevier. (2016). Retrieved Sept. 29, 2022, from https://www.sciencedirect.com/science/article/pii/S0928493115306330

  96. M. Pita, J.M. Abad, C. Vaz-Dominguez, C. Briones, E. Mateo-Martí, J.A. Martín-Gago, M. del Puerto Morales, V.M. Fernández, Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J. Colloid Interface Sci. 321(2), 484–492 (2008). https://doi.org/10.1016/J.JCIS.2008.02.010

    Article  ADS  Google Scholar 

  97. S. Singh, N. Kumar , R. Bhargava, M. Sahni, KD. Sung , JH. Jung, Magnetodielectric effect in BaTiO3/ZnFe2O4 core/shell nanoparticles. Elsevier. (2014). Retrieved Sept. 29, 2022, from https://www.sciencedirect.com/science/article/pii/S0925838813025516

  98. B. Mojić-Lanté, J.Vukmirović, KP. Giannakopoulos , D. Gautam, A. Kukovecz, VV.Srdić, Influence of synthesis conditions on formation of core–shell titanate–ferrite particles and processing of composite ceramics. Ceramics International 41, 1437–1445 (2015). Elsevier. Retrieved Sept. 29, 2022, from https://www.sciencedirect.com/science/article/pii/S0272884214014618

  99. R.Y. Hong, J.H. Li, X. Cao, S.Z. Zhang, G.Q. Di, H.Z. Li, D.G. Wei, On the Fe3O4/Mn1−xZnxFe2O4 core/shell magnetic nanoparticles. J. Alloy. Compd. 480(2), 947–953 (2009). https://doi.org/10.1016/J.JALLCOM.2009.02.098

    Article  Google Scholar 

  100. Wang G, Chang Y, Wang L, Liu C. (2012). Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Elsevier. Retrieved Sept. 29, 2022, from https://www.sciencedirect.com/science/article/pii/S0921883111002007s

  101. J. Cai, X. Wu, S. Li, F. Zheng, Controllable location of Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity. Applied Catalysis B: Environmental 201 (2017) 12–21 Elsevier. Retrieved Sept 29, 2022, from https://www.sciencedirect.com/science/article/pii/S0926337316306099

  102. S. Thatai, P. Khurana, J. Boken, S. Prasad, D. Kumar, Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem. J. 116, 62–76 (2014). https://doi.org/10.1016/j.microc.2014.04.001

    Article  Google Scholar 

  103. J. Jadhav, S. Biswas, Hybrid ZnO: Ag core-shell nanoparticles for wastewater treatment: Growth mechanism and plasmonically enhanced photocatalytic activity. Appl. Surf. Sci. 456, 49–58 (2018). https://doi.org/10.1016/J.APSUSC.2018.06.028

    Article  ADS  Google Scholar 

  104. X. Chen, D. Peng, Q. Ju, F. Wang, Photon upconversion in core-shell nanoparticles. Chem. Soc. Rev. 44(6), 1318–1330 (2015). https://doi.org/10.1039/c4cs00151f

    Article  Google Scholar 

  105. S. Chahal, A. Kumar, P. Kumar, Zn doped α-Fe2O3: an efficient material for UV driven photocatalysis and electrical conductivity. Crystals 10(4), 273 (2020). https://doi.org/10.3390/cryst10040273

    Article  Google Scholar 

  106. Y. Ren, D. Zeng, WJ. Ong, Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. Catalysis 77-40, 289–319 (2019). Elsevier. Retrieved Sept. 30, 2022, from https://www.sciencedirect.com/science/article/pii/S1872206719632936

  107. V. Sonu, S. Dutta, P. Sharma, A. Raizada, A. Hosseini-Bandegharaei, V.K. Gupta, P. Singh, Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc. 23(8), 1119–1136 (2019). https://doi.org/10.1016/J.JSCS.2019.07.003

    Article  Google Scholar 

  108. M.M. Baig, E. Pervaiz, M.J. Afzal, Catalytic activity and kinetic studies of core@Shell nanostructure NiFe2O4@TiO2 for photocatalytic degradation of methyl orange dye. J. Chem. Soc. Pak. 42(4), 531–531 (2020)

    Google Scholar 

  109. A.M. Neris, W.H. Schreiner, C. Salvador, U.C. Silva, C. Chesman, E. Longo, I.M.G. Santos, Photocatalytic evaluation of the magnetic core@shell system (Co, Mn)Fe2O4@TiO2 obtained by the modified Pechini method. Mater. Sci. Engi. B 229, 218–226 (2018). https://doi.org/10.1016/j.mseb.2017.12.029

    Article  Google Scholar 

  110. P. Sathishkumar, R.V. Mangalaraja, S. Anandan, M. Ashokkumar, CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chem. Eng. J. 220, 302–310 (2013). https://doi.org/10.1016/j.cej.2013.01.036

    Article  Google Scholar 

  111. R. Rahimi, M. Heidari-Golafzani, M. Rabbani, Preparation and photocatalytic application of ZnFe2O4@ZnO core-shell nanostructures. Superlattices Microstruct. 85, 497–503 (2015). https://doi.org/10.1016/j.spmi.2015.05.047

    Article  ADS  Google Scholar 

  112. J.O. Tijani, U.A. Aminu, M.T. Bankole, M.M. Ndamitso, A.S. Abdulkareem, Adsorptive and photocatalytic properties of green synthesized ZnO and ZnO/NiFe2O4 nanocomposites for tannery wastewater treatment. Niger. J. Technol. Devel. 17(4), 312–322 (2020). https://doi.org/10.4314/njtd.v17i4.10

    Article  Google Scholar 

  113. G. Lavorato, E. Lima, M. Vasquez Mansilla, H. Troiani, R. Zysler, E. Winkler, Bifunctional CoFe2O4/ZnO Core/Shell nanoparticles for magnetic fluid hyperthermia with controlled optical response. J. Phys. Chem. C 122(5), 3047–3057 (2018). https://doi.org/10.1021/acs.jpcc.7b11115

    Article  Google Scholar 

  114. H.Y. Zhu, R. Jiang, Y.Q. Fu, R.R. Li, J. Yao, S.T. Jiang, Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation. Appl. Surf. Sci. 369, 1–10 (2016). https://doi.org/10.1016/j.apsusc.2016.02.025

  115. N. Jamarun, S. Arief, Synthesis of ZnO-NiFe2O4 magnetic nanocomposites by simple solvothermal method for photocatalytic dye degradation under solar light. Orient. J. Chem. 32(3), 1411–1419 (2016)

    Article  Google Scholar 

  116. C. Singh, A. Goyal, S. Bansal, S. Singhal, SiO2@MFe2O4 core-shell nanostructures: efficient photocatalysts with excellent dispersion properties. Mater. Res. Bull. 85, 109–120 (2017). https://doi.org/10.1016/j.materresbull.2016.09.010

    Article  Google Scholar 

  117. Y.S. Chung, S.B. Park, D.W. Kang, Magnetically separable titania-coated nickel ferrite photocatalyst. Mater. Chem. Phys. 86(2–3), 375–381 (2004). https://doi.org/10.1016/j.matchemphys.2004.03.027

    Article  Google Scholar 

  118. D. Greene, R. Serrano -Garcia, J. Govan, Y.K. Gun’ko, Synthesis characterization and photocatalytic studies of cobalt ferrite-silica-titania nanocomposites. Nanomaterials 4(2), 331–343 (2014). https://doi.org/10.3390/nano4020331

    Article  Google Scholar 

  119. H. Khurshid, J. Alonso, Z. Nemati, M.H. Phan, P. Mukherjee, M.L. Fdez-Gubieda, J.M. Barandiarán, H. Srikanth, Anisotropy effects in magnetic hyperthermia: a comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles. J. Appl. Phys. 117(17), 17A337 (2015). https://doi.org/10.1063/1.4919250

    Article  Google Scholar 

  120. H. Hamad, M. Abd El-Latif, A.E.H. Kashyout, W. Sadik, M. Feteha, Synthesis and characterization of core-shell-shell magnetic (CoFe2O4-SiO2-TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation. New J. Chem. 39(4), 3116–3128 (2015). https://doi.org/10.1039/c4nj01821d

    Article  Google Scholar 

  121. E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryżyńska, A. Zielińska-Jurek, Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.138167

    Article  Google Scholar 

  122. D. Zeng, J. Wang, Y. Xie, Y. Ling, J. Zhao, H. Ye, T. Chen, TiO2@ZnFe2O4 heterojunctions for effecicent photocatalytic degradation of persistent pollutants and hydrogen evolution. Mater. Chem. Phys. 277, 125462 (2022). https://doi.org/10.1016/j.matchemphys.2021.125462

    Article  Google Scholar 

  123. C.J. Chang, Z. Lee, K.W. Chu, Y.H. Wei, CoFe2O4@ZnS core–shell spheres as magnetically recyclable photocatalysts for hydrogen production. J. Taiwan Inst. Chem. Eng. 66, 386–393 (2016). https://doi.org/10.1016/j.jtice.2016.06.033

    Article  Google Scholar 

  124. S.D. Kulkarni, S. Kumbar, S.G. Menon, K.S. Choudhari, C. Santhosh, Magnetically separable core-shell ZnFe2O4@ZnO nanoparticles for visible light photodegradation of methyl orange. Mater. Res. Bull. 77, 70–77 (2016). https://doi.org/10.1016/j.materresbull.2016.01.022

    Article  Google Scholar 

  125. L. Chang, Y. Pu, P. Jing, Y. Cui, G. Zhang, S. Xu, B. Cao, J. Guo, F. Chen, C. Qiao, Magnetic core-shell MnFe2O4@TiO2 nanoparticles decorated on reduced graphene oxide as a novel adsorbent for the removal of ciprofloxacin and Cu(II) from water. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.148400

    Article  Google Scholar 

  126. R. Roto, Y. Yusran, A. Kuncaka, Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption. Appl. Surf. Sci. 377, 30–36 (2016). https://doi.org/10.1016/j.apsusc.2016.03.099

    Article  ADS  Google Scholar 

  127. B. Mojić, K.P. Giannakopoulos, Ž Cvejić, V.V. Srdić, Silica coated ferrite nanoparticles: influence of citrate functionalization procedure on final particle morphology. Ceram. Int. 38(8), 6635–6641 (2012). https://doi.org/10.1016/j.ceramint.2012.05.050

    Article  Google Scholar 

  128. A.L. Morel, S.I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson, M. Simonoff, Sonochemical approach to the synthesis of Fe2O4@SiO2 core - Shell nanoparticles with tunable properties. ACS Nano 2(5), 847–856 (2008). https://doi.org/10.1021/nn800091q

    Article  Google Scholar 

  129. C. Cannas, A. Musinu, A. Ardu, F. Orrù, D. Peddis, M. Casu, R. Sanna, F. Angius, G. Diaz, G. Piccaluga, CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: Magnetic and spectroscopic study. Chem. Mater. 22(11), 3353–3361 (2010). https://doi.org/10.1021/cm903837g

    Article  Google Scholar 

  130. A. Chaudhuri, M. Mandal, K. Mandal, Preparation and study of NiFe2O4/SiO2 core-shell nanocomposites. J. Alloy. Compd. 487(1–2), 698–702 (2009). https://doi.org/10.1016/j.jallcom.2009.07.187

    Article  Google Scholar 

  131. H. Das, T. Arai, N. Debnath, N. Sakamoto, K. Shinozaki, H. Suzuki, N. Wakiya, Impact of acidic catalyst to coat superparamagnetic magnesium ferrite nanoparticles with silica shell via sol-gel approach. Adv. Powder Technol. 27(2), 541–549 (2016). https://doi.org/10.1016/j.apt.2016.02.009

    Article  Google Scholar 

  132. S. Zhang, D. Dong, Y. Sui, Z. Liu, H. Wang, Z. Qian, W. Su, Preparation of core shell particles consisting of cobalt ferrite and silica by sol-gel process. J. Alloys. Compd. 415, 257–260 (2006). https://doi.org/10.1016/j.jallcom.2005.07.048

    Article  Google Scholar 

  133. C. Cannas, A. Musinu, D. Peddis, G. Piccaluga, Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel autocombustion method. Chem. Mater. 18(16), 3835–3842 (2006). https://doi.org/10.1021/cm060650n

    Article  Google Scholar 

  134. O. Masala, R. Seshadri, Spinel ferrite/MnO core/shell nanoparticles: chemical synthesis of all-oxide exchange biased architectures. J. Am. Chem. Soc. 127(26), 9354–9355 (2005). https://doi.org/10.1021/ja051244s

    Article  Google Scholar 

  135. E. Ferdosi, H. Bahiraei, D. Ghanbari, Investigation the photocatalytic activity of CoFe2O4/ZnO and CoFe2O4/ZnO/Ag nanocomposites for purification of dye pollutants. Sep. Purif. Technol. 211, 35–39 (2019). https://doi.org/10.1016/j.seppur.2018.09.054

    Article  Google Scholar 

  136. N. Venkatesha, Y. Qurishi, H.S. Atreya, C. Srivastava, ZnO coated CoFe2O4 nanoparticles for multimodal bio-imaging. RSC Adv. 6(23), 18843–18851 (2016). https://doi.org/10.1039/c5ra25953c

    Article  ADS  Google Scholar 

  137. S.Y. Srinivasan, K.M. Paknikar, V. Gajbhiye, D. Bodas, Magneto-conducting core/shell nanoparticles for biomedical applications. ChemNanoMat 4(2), 151–164 (2018). https://doi.org/10.1002/CNMA.201700278

    Article  Google Scholar 

  138. C. Wang, H. Xu, C. Liang, Y. Liu, Z. Li, G. Yang, L. Cheng, Y. Li, Z. Liu, Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 7(8), 6782–6795 (2013). https://doi.org/10.1021/NN4017179

    Article  Google Scholar 

  139. Wang J, Zhou Z, Wang L, Wei J, Yang H, Yang S, Zhao J. (2015). CoFe2O4@MnFe2O4/polypyrrole nanocomposites for in vitro photothermal/magnetothermal combined therapy. Pubs.Rsc.Org. Retrieved Sept. 30, 2022, from https://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra12733

  140. H.V. Xu, X.T. Zheng, B.Y.L. Mok, S.A. Ibrahim, Y. Yu, Y.N. Tan, Molecular design of bioinspired nanostructures for biomedical applications: synthesis, self-assembly and functional properties. J. Mol. Eng. Mater. 04(01), 1640003 (2016). https://doi.org/10.1142/S2251237316400037

    Article  Google Scholar 

  141. Hasantabar V, Lakouraj MM, Zare EN, Mohseni M.(2015) Innovative magnetic tri-layered nanocomposites based on polyxanthone triazole, polypyrrole and iron oxide: Synthesis, characterization and investigation of. Pubs.Rsc.Org. Retrieved Sept 30, 2022, from https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra07309

  142. R. Suresh, K. Giribabu, R. Manigandan, A. Stephen, V. Narayanan, Fe2O3 @polyaniline nanocomposite: Characterization and unusual sensing property. Mater. Lett. (2014). https://doi.org/10.1016/j.matlet.2014.04.178

    Article  Google Scholar 

  143. X. Xu, A. Dutta, J.B. Khurgin, A. Wei, J. Khurgin, V.M. Shalaev, A. Boltasseva, TiN@TiO2 Core-Shell Nanoparticles as Plasmon-Enhanced Photosensitizers: The Role of Hot Electron Injection, vol. 14 (Wiley Online Library, Hoboken, 2020)

    Google Scholar 

  144. W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147 (2013). https://doi.org/10.1002/SMLL.201201161

    Article  Google Scholar 

  145. M.A. Zeleke, D.H. Kuo, Synthesis and application of V2O5-CeO2 nanocomposite catalyst for enhanced degradation of methylene blue under visible light illumination. Chemosphere 235, 935–944 (2019). https://doi.org/10.1016/J.CHEMOSPHERE.2019.06.230

    Article  ADS  Google Scholar 

  146. W. Zhou, J. Zhu, F. Wang, M. Cao, T. Zhao, One-step synthesis of Ceria/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 206, 237–240 (2017). https://doi.org/10.1016/J.MATLET.2017.06.117

    Article  Google Scholar 

  147. Z. Zang, Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl. Phys. Lett. 112(4), 042106 (2018). https://doi.org/10.1063/1.5017002

    Article  ADS  Google Scholar 

  148. H. Huang, J. Zhang, L. Jiang, Z. Zang, Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.05.132

    Article  Google Scholar 

  149. S. Cao, H. Wang, H. Li, J. Chen, Z. Zang, Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr 2 perovskite solar cells. Chem Eng 394, 124903 (2020). https://doi.org/10.1016/j.cej.2020.124903

    Article  Google Scholar 

  150. H. Wang, H. Li, K. Sun, Z. Zang, S. Cao, B. Yang, M. Wang, X. Hu, NH4Cl-Modified ZnO for High-Performance CsPbIBr 2 Perovskite Solar Cells via Low-Temperature Process, vol. 4 (Wiley Online Library, Hoboken, 2019)

    Google Scholar 

  151. H. Zhang, K. Yu, Z. Wu, Y. Zhu, Ultrathin triphenylamine–perylene diimide polymer with D-A structure for photocatalytic oxidation of N-heterocycles using ambient air. EcoMat 4(5), e12215 (2022). https://doi.org/10.1002/EOM2.12215

    Article  Google Scholar 

  152. H.A. Aghdam, E. Sanatizadeh, M. Motififard, F. Aghadavoudi, S. Saber-Samandari, S. Esmaeili, E. Sheikhbahaei, M. Safari, A. Khandan, Effect of calcium silicate nanoparticle on surface feature of calcium phosphates hybrid bio-nanocomposite using for bone substitute application. Powder Technol. (2020). https://doi.org/10.1016/j.powtec.2019.10.111

    Article  Google Scholar 

  153. F. Aghadavoudi, H. Golestanian, Y. Tadi Beni, Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling. Polym. Compos. 39(12), 4513–4523 (2018). https://doi.org/10.1002/PC.24557

    Article  Google Scholar 

  154. A. Farazin, F. Aghadavoudi, M. Motififard, S. Saber-Samandari, A. Khandan, Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles. J. Appl. Comput. Mech. 7(4), 1907–1915 (2021). https://doi.org/10.22055/JACM.2020.32902.2097

    Article  Google Scholar 

  155. F. Aghadavoudi, H. Golestanian, Y. Tadi Beni, Investigating the effects of resin crosslinking ratio on mechanical properties of epoxy-based nanocomposites using molecular dynamics. Polym. Compos. 38, E433–E442 (2017). https://doi.org/10.1002/PC.24014

    Article  Google Scholar 

  156. M. Gorgizadeh, N. Azarpira, M. Lotfi, F. Daneshvar, F. Salehi, N. Sattarahmady, Sonodynamic cancer therapy by a nickel ferrite/carbon nanocomposite on melanoma tumor: In vitro and In vivo studies. Photodiagn. Photodyn. Ther. 27, 27–33 (2019). https://doi.org/10.1016/j.pdpdt.2019.05.023

    Article  Google Scholar 

  157. M.R. Heidari, R.S. Varma, M. Ahmadian, M. Pourkhosravani, S.N. Asadzadeh, P. Karimi, M. Khatami, Photo-fenton like catalyst system: activated carbon/CoFe2O4 nanocomposite for reactive dye removal from textile wastewater. Appl. Sci. (2019). https://doi.org/10.3390/app9050963

    Article  Google Scholar 

  158. T.J. Al-Musawi, P. Rajiv, N. Mengelizadeh, F. Sadat Arghavan, D. Balarak, Photocatalytic efficiency of CuNiFe2O4 nanoparticles loaded on multi-walled carbon nanotubes as a novel photocatalyst for ampicillin degradation. J. Mol. Liq. 337, 116470 (2021). https://doi.org/10.1016/J.MOLLIQ.2021.116470

    Article  Google Scholar 

  159. Z. Yuan, P.C. Wu, Y.C. Chen, Optical resonator enhanced photovoltaics and photocatalysis: fundamental and recent progress. Laser Photonics Rev. 16(2), 2100202 (2022). https://doi.org/10.1002/LPOR.202100202

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Sonia acknowledges University Grant Commission, India for providing research fellowship (UGC Ref. No.: 191620168538 (CSIR-UGC NET JAN. 2020)).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sonia, Harita, Suman and Seema Devi. The first draft of the manuscript was written by  Sonia and all authors commented on previous versions of the manuscript. Parmod Kumar, Ashok Kumar, Surjeet Chahal, Suresh Kumar read and approved the final manuscript.”

Corresponding author

Correspondence to Ashok Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is not any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonia, Kumari, H., Suman et al. Spinel ferrites/metal oxide nanocomposites for waste water treatment. Appl. Phys. A 129, 91 (2023). https://doi.org/10.1007/s00339-022-06288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06288-0

Keywords

Navigation