Skip to main content
Log in

Electrical properties of amorphous Cu doped InSe thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we employed thermal evaporation under vacuum conditions to introduce copper dopants into amorphous InSe thin films. Our objective was to scrutinize the effects of varied copper doping concentrations on the structural, compositional, electrical, and photoelectrical properties of the films. Our observations indicated that copper doping did not induce discernible alterations in the amorphous morphology of the InSe films, yet it yielded notable enhancements in the material’s atomic stoichiometry. Notably, films subjected to both pristine conditions and 0.09 at. % copper doping exhibited extrinsic n-type conductivity behavior, while those doped with 0.42 at. % copper displayed a transition to p-type conductivity. Furthermore, our investigation encompassed electrical conductivity measurements conducted over a temperature range spanning from 100 to 320 K, elucidating the dominance of thermal excitation mechanisms at higher temperatures, and the prevalence of variable range hopping (VRH) processes at lower temperatures. The magnitude of copper dopants in the InSe matrix exerted discernible influence over impurity kinetics and VRH parameters, encompassing factors such as the degree of disorder, density of states proximate to the Fermi level, and average hopping distance. Additionally, our photoelectrical assessments unveiled that a nominal concentration of copper doping (0.09 at. %) yielded a remarkable augmentation of over 70% in the photoconductivity of the InSe films, underscoring its potential suitability for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Jindal, A. Pandey, M. Tomar, P.K. Jha, App. Surf. Sci. 595, 153505 (2022). https://doi.org/10.1016/j.apsusc.2022.153505

    Article  Google Scholar 

  2. L.H.K. Alfhaid, A.F. Qasrawi, S.E. AlGarni, IEEE Trans. Electron Devices 68, 1093–1100 (2021). https://doi.org/10.1109/TED.2021.3049759

    Article  ADS  Google Scholar 

  3. H. Lv, L. Chu, S. Wang, S. Sun, X. Sun, Y. Jia, F. Chen, Opt. Express 30, 23986–23999 (2022). https://doi.org/10.1364/OE.462811

    Article  ADS  Google Scholar 

  4. Y. Yan, Ghulam Abbas, Feng Li, Yu Li, Bofang Zheng, Huide Wang, and Fusheng Liu, Advanced Materials. Interfaces 9(12), 2102068 (2022)

    Google Scholar 

  5. M. Isik, N.M. Gasanly, Mater. Sci. Semicond. Process. 107, 104862 (2020)

    Article  Google Scholar 

  6. H. Singh, S. Kumari, P. Singh, A. Kumar, A. Thakur, J. Mater. Sci.: Mater. Electron. 33(30), 23599–23606 (2022)

    Google Scholar 

  7. H. Bergeron, L.M. Guiney, M.E. Beck, C. Zhang, V.K. Sangwan, C.G. Torres-Castanedo, J.T. Gish, R. Rao, D.R. Austin, S. Guo, D. Lam, K. Su, P.T. Brown, N.R. Glavin, B. Maruyama, M.J. Bedzvk, V.P. Dravid, M.C. Hersam, Appl. Phys. Rev. 7, 041402 (2020). https://doi.org/10.1063/5.0023080

    Article  ADS  Google Scholar 

  8. X. Yan, X. Wu, Y. Fang, W. Sun, C. Yao, Y. Wang, X. Zhang, Y. Song, Opt. Mater. 108, 110171 (2020). https://doi.org/10.1016/j.optmat.2020.110171

    Article  Google Scholar 

  9. C.R.P. Inbaraj, R.J. Mathew, R. Sankar, C.H. Lee, Y.F. Chen, Optica Publishing Group (2020). https://doi.org/10.1364/NOMA.2020.NoTu2F.2

    Article  Google Scholar 

  10. K.H. Lee, M.W. Oh, H.S. Kim, W.H. Shin, K. Lee, J.H. Lim, J.I. Kim, S.I. Kim, Inorg. Chem. Front. 6, 1475–1481 (2019). https://doi.org/10.1039/C9QI00210C

    Article  Google Scholar 

  11. Y. Zhao, K. Nie, L. He, Chem. Phys. Lett. 824, 140549 (2023). https://doi.org/10.1016/j.cplett.2023.140549

    Article  Google Scholar 

  12. H.H. Gullu, O. Surucu, M. Terlemezoglu, M. Isik, C. Ercelebi, N.M. Gasanly, M. Parlak, Thin Solid Films 701, 137941 (2020)

    Article  ADS  Google Scholar 

  13. X. Li, C. Xia, J. Du, W. Xiong, J. Mater. Sci. 53, 3500–3508 (2018). https://doi.org/10.1007/s10853-017-1749-3

    Article  ADS  Google Scholar 

  14. A.F. Qasrawi, Philos. Mag. 9, 3027–3035 (2010). https://doi.org/10.1080/14786431003767041

    Article  ADS  Google Scholar 

  15. M.D. Sharma, N. Goyal J. Ovonic Res. 14, 145–154 (2018)

    Google Scholar 

  16. A.F. Qasrawi, R.R. Kmail, Microw. Opt. Technol. Lett. 62, 3848–3856 (2020). https://doi.org/10.1002/mop.32542

    Article  Google Scholar 

  17. A. Das, P. Banerji, Phys. Status Solidi (B) (2023). https://doi.org/10.1002/pssb.202300078

    Article  Google Scholar 

  18. R. Vilaplana, S.G. Parra, A. Jorge-Montero, P. Rodríguez-Hernández, A. Munoz, D. Errandonea, A. Segura, F.J. Manjón, Inorg. Chem. 57, 8241–8252 (2018). https://doi.org/10.1021/acs.inorgchem.8b00778

    Article  Google Scholar 

  19. S.H. Jung, J.H. Choi, C.W. Chung, Curr. Photovolt. Res. 2, 88–94 (2014)

    Google Scholar 

  20. A.F. Qasrawi, R.R. Kmail, Phys. Status Solidi (B) 257, 2000231 (2020). https://doi.org/10.1002/pssb.202000231

    Article  ADS  Google Scholar 

  21. S. Horzum, E. Bulduk, D. Şener, T. Serin, Superlattices Microstruct. 159, 107034 (2021). https://doi.org/10.1016/j.spmi.2021.107034

    Article  Google Scholar 

  22. R. Sun, C.L. Yang, M.S. Wang, X.G. Ma, J. Power Sources 547, 232008 (2022). https://doi.org/10.1016/j.jpowsour.2022.232008

    Article  Google Scholar 

  23. R. Yoneda, K. Beppu, T. Maeda, T. Wada, Jpn. J. Appl. Phys. 61, SC1080 (2022). https://doi.org/10.35848/1347-4065/ac48cf

    Article  Google Scholar 

  24. W. Wijayanti, M.N. Sasongko, Renew. Energy 204, 421–431 (2023). https://doi.org/10.1016/j.renene.2023.01.008

    Article  Google Scholar 

  25. O. Madelung, Semiconductors: data handbook, 3rd edn. (Springer, Berlin, 2004)

    Book  Google Scholar 

  26. C. Viswanathan, G.G. Rusu, S. Gopal, D. Mangalaraj, S.K. Narayandass, J. Optoelectron. Adv. Mater. 7, 705–711 (2005)

    Google Scholar 

  27. J.H. Lee, B.O. Park, Thin Solid Films 106, 242–245 (2003). https://doi.org/10.1016/S0040-6090(03)00014-2

    Article  Google Scholar 

  28. D.F. Zambrano-Mera, R. Espinoza-González, R. Villarroel, A. Rosenkranz, N. Carvajal, M.I. Pintor-Monroy, A.G. Montaño-Figueroa, Solar Energy Mater Solar Cells 243, 111784 (2022)

    Article  Google Scholar 

  29. H.-J. Lee, H.S. Park, S. Han, J.Y. Kim, Thermochim Acta 542(57), 61 (2012)

    Google Scholar 

  30. A. Saldaña-Ramírez, M.R.A. Cruz, I. Juárez-Ramírez, L.M. Torres-Martínez, Opt. Mater. 110, 110501 (2020)

    Article  Google Scholar 

  31. M. Isik, S. Delice, H. Nasser, N.M. Gasanly, N.H. Darvishov, V.E. Bagiev, Mater. Sci. Semicond. Process. 120, 105286 (2020)

    Article  Google Scholar 

  32. I. Guler, M. Isik, N. Gasanly, J. Mater. Sci.: Mater. Electron. 34(17), 1346 (2023)

    Google Scholar 

  33. C.Y. Tsay, H.C. Cheng, Y.T. Tung, W.H. Tuan, C.K. Lin, Thin Solid Films 517, 1032–1036 (2008). https://doi.org/10.1016/j.tsf.2008.06.030

    Article  ADS  Google Scholar 

  34. S.E. Algarni, A.F. Qasrawi, N.M. Khusayfan, Appl. Phys. A 128, 254 (2022). https://doi.org/10.1007/s00339-022-05392-5

    Article  ADS  Google Scholar 

  35. A.M. Ziqan, A.F. Qasrawi, A.H. Mohammad, N.M. Gasanly, Bull. Mater. Sci. 38(593), 598 (2015). https://doi.org/10.1007/s12034-015-0869-0

    Article  Google Scholar 

  36. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, 2012)

    Google Scholar 

  37. A.F. Qasrawi, Philos. Mag. 90, 3027–3035 (2010). https://doi.org/10.1080/14786431003767041

    Article  ADS  Google Scholar 

  38. A.F. Qasrawi, I. Günal, C. Ercelebi, J. Exp. Ind. Crystallogr. 35, 1077–1086 (2000). https://doi.org/10.1002/1521-4079(200009)35:9%3C1077::AID-CRAT1077%3E3.0.CO;2-Y

    Article  Google Scholar 

  39. F. Zhong, J. Zhao, L. Shi, G. Cai, Y. Zheng, Y. Zheng, Y. Xiao, L. Jiang, Electrochim. Acta 293, 338–347 (2019). https://doi.org/10.1016/j.electacta.2018.09.152

    Article  Google Scholar 

  40. R.H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, 1992)

    Google Scholar 

  41. A.F. Qasrawi, N.M. Gasanly, Phil. Mag. 90, 3845–3854 (2010). https://doi.org/10.1080/14786435.2010.495362

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Arab American University, Jenin, Palestine and by Istinye University, Istanbul, Turkey. The authors, therefore, acknowledge with thanks the Arab American and Istinye Universities for the technical and financial support.

Funding

This work was funded by Arab American University, Jenin, Palestine and by Istinye University, Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Contributions

AFQ handled data analysis in all parts, article editing and reviewing, and carried out the modeling of variable range hopping. MKNA collected all experimental data, organized the results and shared in the analyses.

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors participated in the work.

Consent for publication

All authors agree to publish this article in the Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasrawi, A.F., Abuarra, M.K.N. Electrical properties of amorphous Cu doped InSe thin films. Appl. Phys. A 129, 664 (2023). https://doi.org/10.1007/s00339-023-06955-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06955-w

Keywords

Navigation