Skip to main content
Log in

Microstructure, electrical and optoelectronic characterizations of transparent conductive nanocrystalline \({\mathbf{In}}_{\mathbf{2}}{\mathbf{O}}_{\mathbf{3}}\):Sn thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study Sn doped \(\hbox {In}_{2}\hbox {O}_{3}\) (ITO) thin films were deposited on glass substrates by e-beam evaporation technique at different oxygen partial pressure and then were annealed in vacuum at \(400\,^\circ \hbox {C}\) for 1 h. The effects of oxygen partial pressure on the crystallite size, dislocation density, outer cut-off radius of dislocation, fraction of edge and screw dislocation types, the electrical resistivity, optical transmittance, refractive index, porosity and optical band gap energy were studied. The films deposited at an optimized oxygen partial pressure of \(1\times 10^{-4}\) mbar showed high transparency (88 %) over the visible wavelength region, low electrical resistivity of \(3.2\times 10^{-4}\,\Omega \,\hbox {cm}\) and the optical band gap of 3.63(3) eV. It is also observed that the best crystal quality (high crystallite size and low dislocation density) are obtained in partial pressure of \(1\times 10^{-4}\) mbar, indicating the oxygen partial pressure is a key factor in controlling the microstructure, electrical and optical properties of ITO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Scherrer, Nachr. Gött. 2, 98 (1918)

    Google Scholar 

  2. G. Ribarik, Modeling of Diifraction Patterns Based on Microstructure Properties. Doctoral Dissertation, Eotvos Lorand University, Department of Material Physics (2008)

  3. T. Ungar, J. Gubicza, Z. Kristallogr. 222, 114 (2007)

    Article  Google Scholar 

  4. J. Gubicza, T. Ungar, Z. Kristallogr 222, 567 (2007)

    Article  Google Scholar 

  5. H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, Mater. Res. Bull. 42, 487 (2007)

    Article  Google Scholar 

  6. V. VasanthiPillay, K. Vijayalakshmi, J. Mater. Sci. Mater. Electron. 24, 1895 (2013)

    Article  Google Scholar 

  7. U. Betz, M. Kharrazi Olsson, J. Marthy, M.F. Escol, F. Atamny, Surf. Coat. Technol. 200, 5751 (2006)

    Article  Google Scholar 

  8. X. Ren, J. Cao, S. Yuan, L. Shi, J. Mater. Sci. Mater. Electron. 25, 2923 (2014)

    Article  Google Scholar 

  9. S. Heusing, P.W. de Oliveira, E. Kraker, A. Haase, C. Palnger, M. Veith, Thin Solid Films 518, 1164 (2009)

    Article  Google Scholar 

  10. A. Arazna, G. Kozio, K. Janeczek, K. Futera, W. Steplewski, J. Mater. Sci. Mater. Electron. 24, 267 (2013)

    Article  Google Scholar 

  11. H.R. Fallah, MG Varnamkhasti, M.J. Vahid, Renew. Energy 35, 1527 (2010)

    Article  Google Scholar 

  12. Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, Z. Xu, L. Zhang, R. Zhang, Y. Zheng, J. Mater. Sci. Mater. Electron. 25, 2287 (2014)

    Article  Google Scholar 

  13. P. Scardi, M. Leoni, Whole powder pattern modeling. Acta Crystallogr. A 58, 190 (2002)

    Article  Google Scholar 

  14. B.E. Warren, B.L. Averbach, J. Appl. Phys. 21, 595 (1950)

    Article  Google Scholar 

  15. C.E. Krill, R. Birringer, Philos. Mag. A 77, 621 (1998)

    Article  Google Scholar 

  16. A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, V. Ganesan, C.H. Bhosale, J. Alloys Compd. 464, 387 (2008)

    Article  Google Scholar 

  17. P. Scardi, M. Leoni, Acta Crystallogr. A 57, 604 (2001)

    Article  Google Scholar 

  18. M. Wilkens, Krist. Tech. 11, 1159 (1976)

    Article  Google Scholar 

  19. T. Ungar, G. Tichy, Phys. Status Solidi (a) 171, 425 (1999)

    Article  Google Scholar 

  20. M. Leoni, T. Confente, P. Scardi, Mater. Sci. 2, 249 (2006)

    Google Scholar 

  21. A. Borbely, J. Dragomir, G. Ribarik, T. Ungar, J. Appl. Crystallogr. 36, 160 (2003)

    Article  Google Scholar 

  22. H. Stroescu, M. Anastasescu, S. Preda, M. Nicolescu, M. Stoica, N. Stefan, V. Kampylafka, E. Aperathitis, M. Modreanu, M. Zaharescu, M. Gartner, Thin Solid Films 541, 121 (2013)

    Article  Google Scholar 

  23. J. George, C.S. Menon, Surf. Coat. Technol. 132, 45 (2000)

    Article  Google Scholar 

  24. H.Y. Yeom, N. Popovich, E. Chason, D.C. Paine, Thin Solid Films 411, 17 (2002)

    Article  Google Scholar 

  25. A.L. Dawar, J.C. Joshi, J. Mater. Sci. 19, 1 (1984)

    Article  Google Scholar 

  26. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E Sci. Instrum. 9, 1002 (2001)

    Article  Google Scholar 

  27. S.H. Oh, D.J. Kim, S.H. Hahn, E.J. Kim, Mater. Lett. 57, 4151 (2003)

    Article  Google Scholar 

  28. N. Kumari, S.B. Krupanidhi, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 21, 1107 (2010)

    Article  Google Scholar 

  29. R. Azimirad, O. Akhavan, A.Z. Moshfegh, J. Electrochem. Soc. 153, 11 (2006)

    Article  Google Scholar 

  30. E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natsakou, V. Cimalla, G. Kiriakidis, Sensors Actuators B Chem. 80, 155 (2001)

    Article  Google Scholar 

  31. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, J. Appl. Phys. 98, 013505 (2005)

    Article  Google Scholar 

  32. S.R. Aghdaee, V. Soleimanian, B. Tayebi, Superlattice. Microst. 51, 149 (2012)

    Article  Google Scholar 

  33. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  34. R.X. Wang, C.D. Beling, S. Fung, A.B. Djurisic, C.C. Ling, C. Kwong, S. Li, J. Phys. D Appl. Phys. 38, 2000 (2005)

    Article  Google Scholar 

  35. G. Haacke, J. Appl. Phys. 474086 (1976)

Download references

Acknowledgments

The authors would like to thank the Iran Nanotechnology Initiative Council for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Soleimanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varnamkhasti, M.G., Soleimanian, V. Microstructure, electrical and optoelectronic characterizations of transparent conductive nanocrystalline \({\mathbf{In}}_{\mathbf{2}}{\mathbf{O}}_{\mathbf{3}}\):Sn thin films. J Mater Sci: Mater Electron 26, 3223–3230 (2015). https://doi.org/10.1007/s10854-015-2820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2820-y

Keywords

Navigation