Skip to main content
Log in

Effect of native defects on thermoelectric properties of copper iodide films

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Copper iodide (CuI) is a promising p-type wide bandgap semiconductor for optoelectronic and thermoelectric applications. Its p-type conductivity is due to the existence of native defect copper vacancy (VCu). We report the effect of native defects on microstructural, optical, and thermoelectric properties of ion beam sputtered CuI films via vacuum annealing. X-ray diffraction results showed that the CuI film is a γ-phase with zinc blende crystal structure, further confirmed by Raman spectroscopy analysis. Cu-rich region was observed in vacuum-annealed films by cross-section transmission electron microscopy and element mapping, while as-deposited film is very uniform. As-deposited film exhibited an electrical conductivity σ = 22.9 S cm−1, hole density p = 3.3 × 1019 cm−3, hole mobility μp = 4.3 cm2 V−1 s−1, and the Seebeck coefficient α = 244.9 μV K−1 which yielded a power factor of α2σ = 137.8 μW m−1 K−2, whereas vacuum annealing led to the large increase in Seebeck coefficient α = 561.8 μV K−1 and a strongly increased power factor, α2σ = 443.5 μW m−1 K−2 along with the slightly decreased conductivity, σ = 14.0 S cm−1 when the film was annealed at 100 °C. The increase in Seebeck coefficient is attributed to the decrease in hole density along with energy-dependent scattering of charge carriers at the grain boundaries between CuI and Cu-rich region. The decreased hole density is due to the formation of less VCu in high vacuum annealing condition. In addition, the film exhibited 60–85% transmission in the visible region. The results demonstrated that by a simple vacuum annealing, a high performance transparent thermoelectric material could be achieved, which provides a simple strategy for improving the properties of thermoelectric materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

N/A

References

  1. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  2. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 320, 634–638 (2008)

    Article  CAS  Google Scholar 

  3. S. Fujita, Wide-bandgap semiconductor materials: For their full bloom. Jpn. J. Appl. Phys. 54, 030101 (2015)

    Article  CAS  Google Scholar 

  4. W.G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z.M. Gibbs, C. Felser, G.J. Snyder, Nat. Rev. Mater. 1, 1–10 (2016)

    Article  CAS  Google Scholar 

  5. M.N. Tripathi, C.M. Bhandari, J. Phys. Condens. Matter 15, 5359 (2003)

    Article  CAS  Google Scholar 

  6. Y. Qiu, L. Xi, X. Shi, P. Qiu, W. Zhang, L. Chen, J.R. Salvador, J.Y. Cho, J. Yang, Y.C. Chien, S.W. Chen, Y. Tang, G.J. Snyder, Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites. Adv. Funct. Mater. 23, 3194–3203 (2013)

    Article  CAS  Google Scholar 

  7. P.P. Murmu, J. Kennedy, S. Suman, S.V. Chong, J. Leveneur, J. Storey, S. Rubanov, G. Ramanath, Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films. Mater. Des. 163, 107549 (2019)

    Article  CAS  Google Scholar 

  8. M. Grundmann, F.L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, H. Wenckstern, Phys. Stat. Sol. (A) 210, 1671–1703 (2013)

    Article  CAS  Google Scholar 

  9. P.P. Murmu, V. Karthik, Z. Liu, V. Jovic, T. Mori, W.L. Yang, K.E. Smith, J. Kennedy, Influence of Carrier Density and Energy Barrier Scattering on a High Seebeck Coefficient and Power Factor in Transparent Thermoelectric Copper Iodide. ACS Appl. Energy Mater. 3, 10037–10044 (2020)

    Article  CAS  Google Scholar 

  10. C. Yang, M. Kneiβ, M. Lorenz, M. Grundmann, Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. PNAS 113, 12929–12933 (2016)

    Article  CAS  Google Scholar 

  11. C. Yang, D. Souchay, M. Kneiß, M. Bogner, H.M. Wei, M. Lorenz, O. Oeckler, G. Benstetter, Y.Q. Fu, M. Grundmann, Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nat. Commun. 8, 16076 (2017)

    Article  CAS  Google Scholar 

  12. B.L. Zhu, X.Z. Zhao, Phys. Stat. Sol. (A) 208, 91–96 (2011)

    Article  CAS  Google Scholar 

  13. S. Inudo, M. Miyake, T. Hirato, Phys. Stat. Sol. (A) 210, 2395–2398 (2013)

    Article  CAS  Google Scholar 

  14. D. Ahn, J.D. Song, S.S. Kang, J.Y. Lim, S.H. Yang, S. Ko, S.H. Park, S.J. Park, D.S. Kim, H.J. Chang, J. Chang, Intrinsically p-type cuprous iodide semiconductor for hybrid light-emitting diodes. Sci. Rep. 10, 3995 (2020)

    Article  CAS  Google Scholar 

  15. S. Lee, H.J. Lee, Y. Ji, S.M. Choi, K.H. Lee, K. Hong, Vacancy engineering of a solution processed CuI semiconductor: tuning the electrical properties of inorganic P-channel thin-film transistors. J. Mater. Chem. C 8, 9608–9614 (2020)

    Article  CAS  Google Scholar 

  16. N. Yamada, R. Ino, H. Tomura, Y. Kondo, Y. Ninomiya, High-Mobility Transparent p-Type CuI Semiconducting Layers Fabricated on Flexible Plastic Sheets: Toward Flexible Transparent Electronics. Adv. Electron. Mater. 3, 1700298 (2017)

    Article  CAS  Google Scholar 

  17. B.M.M. Faustino, D. Gomes, J. Faria, T. Juntunen, G. Gaspar, C. Bianchi, A. Almeida, A. Marques, I. Tittonen, I. Ferreira, CuI p-type thin films for highly transparent thermoelectric p-n modules. Sci. Rep. 8, 6867 (2018)

    Article  CAS  Google Scholar 

  18. D.K. Kaushik, M. Selvaraj, S. Ramu, S. Subrahmanyam, Thermal evaporated Copper Iodide (CuI) thin films: A note on the disorder evaluated through the temperature dependent electrical properties. Sol. Energy Mater. Sol. Cells 165, 52–58 (2017)

    Article  CAS  Google Scholar 

  19. J. Wang, J. Li, S.S. Li, Nativep-type transparent conductive CuI via intrinsic defects. J. Appl. Phys. 110, 054907 (2011)

    Article  CAS  Google Scholar 

  20. S. Koyasu, N. Umezawa, A. Yamaguchi, M. Miyauchi, Optical properties of single crystalline copper iodide with native defects: Experimental and density functional theoretical investigation. J. Appl. Phys. 125, 115101 (2019)

    Article  CAS  Google Scholar 

  21. P. Gao, M. Gu, X.L. Liu, B. Liu, S.M. Huang, X-ray excited luminescence of cuprous iodide single crystals: On the nature of red luminescence. Appl. Phys. Lett. 95, 221904 (2009)

    Article  CAS  Google Scholar 

  22. G. Lin, F. Zhao, Y. Zhao, D. Zhang, L. Yang, X. Xue, X. Wang, C. Qu, Q. Li, L. Zhang, Luminescence Properties and Mechanisms of CuI Thin Films Fabricated by Vapor Iodization of Copper Films. Mater. 9(12), 990 (2016)

    Article  CAS  Google Scholar 

  23. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl. Surf. Sci. 367, 52–58 (2016)

    Article  CAS  Google Scholar 

  24. X. Ding, X. Cui, A. Sohail, P.P. Murmu, J.V. Kennedy, N.N. Bao, J. Ding, R. Liu, et al., Adv. Quantum Technol (2020). https://doi.org/10.1002/qute.202000093

  25. S. Ahmed, X.Y. Carl Cui, X. Ding, P.P. Murmu, N. Bao, X. Geng, S. Xi, R. Liu, J. Kennedy, T. Wu, L. Wang, K. Suzuki, J. Ding, X. Chu, S.R. Clastinrusselraj Indirathankam, M. Peng, A. Vinu, S.P. Ringer, J. Yi, Colossal Magnetization and Giant Coercivity in Ion-Implanted (Nb and Co) MoS2Crystals. ACS Appl. Mater. Interfaces 12, 58140–58148 (2020)

    Article  CAS  Google Scholar 

  26. N. Yamada, R. Ino, Y. Ninomiya, Truly Transparent p-Type γ-CuI Thin Films with High Hole Mobility. Chem. Mater. 28, 4971–4981 (2016)

    Article  CAS  Google Scholar 

  27. R. Mulla, M.K. Rabinal, Defect-Controlled Copper Iodide: A Promising and Ecofriendly Thermoelectric Material. Energy Technol. 6, 1178–1185 (2018)

    Article  CAS  Google Scholar 

  28. S.Q. Bai, I.H.K. Wong, N. Zhang, K. Lin Ke, M. Lin, D.J. Young, T.S.A. Hor, A new 3-D coordination polymer as a precursor for CuI-based thermoelectric composites. Dalton Trans. 47, 16292–16298 (2018)

    Article  CAS  Google Scholar 

  29. J. Shuai, Y. Sun, X. Tan, T. Mori, Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the High‐Performance GeTe Thermoelectric Material. Small 16, 1906921 (2020)

    Article  CAS  Google Scholar 

  30. Z. Liu, N. Sato, Q. Guo, W. Gao, T. Mori, Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction. NPG Asia Mater. 12, 66 (2020)

    Article  CAS  Google Scholar 

  31. Z. Liu, W. Gao, W. Zhang, N. Sato, Q. Guo, T. Mori, High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. Adv. Energy Mater. 10, 2002588 (2020)

    Article  CAS  Google Scholar 

  32. C. Bera, S. Jacob, I. Opahle, N.S.H. Gunda, R. Chmielowski, G. Dennler, G.K.H. Madsen, Integrated computational materials discovery of silver doped tin sulfide as a thermoelectric material. Phys. Chem. Chem. Phys. 16(37), 19894–19899 (2014)

    Article  CAS  Google Scholar 

  33. R. Gupta, N. Kumar, P. Kaur, C. Bera, Phys. Chem. Chem. Phys. 22(34), 18989–19008 (2020)

    Article  CAS  Google Scholar 

  34. P. Shyni, P.P. Pradyumnan, Fermi level tuning in modified Bi2Te3system for thermoelectric applications. RSC Adv. 11, 4539–4546 (2021)

    Article  CAS  Google Scholar 

  35. P. Shyni, P.P. Pradyumnan, P. Rajasekar, A.M. Narayanan, A.M. Umarji, Graphitic carbon nitride-bismuth antimony telluride nanocomposites: A potential material for thermoelectric applications. J. Alloys Compd. 853, 156872 (2021)

    Article  CAS  Google Scholar 

  36. P.P. Murmu, A. Shettigar, S.V. Chong, Z. Liu, D. Goodacre, V. Jovic, T. Mori, K.E. Smith, J. Kennedy, Role of phase separation in nanocomposite indiumtin-oxide films for transparent thermoelectric applications. Journal of Materiomics. 7, 612–620 (2021)

  37. P.P. Murmu, S.V. Chong, J. Storey, S. Rubanov, J. Kennedy,  Secondary phase induced electrical conductivity and improvement in thermoelectric power factor of zinc antimonide films. Materials Today Energy 13, 249–255 (2019)

  38. B.D. Cullity, S. R. Stock. Elements of X-Ray Diffraction, 3rd ed. (Prentice-Hall, New York, 2001)

  39. P.P. Murmu, J. Kennedy, B.J. Ruck, G.V.M. Williams, A. Markwitz, S. Rubanov, A.A. Suvorova, J. Mater, Sci. 47(3), 1119–1126 (2012)

    CAS  Google Scholar 

  40. D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, J. Chung, Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules. Appl. Phys. Lett. 90, 192101 (2007)

    Article  CAS  Google Scholar 

  41. A. Pakdel, Q. Guo, V. Nicolosi, T. Mori, J. Mater, Chem. A 6, 21341–21349 (2018)

    CAS  Google Scholar 

  42. Z. Zhang, Y. Wu, H. Zhang, Z. Zeng, Z. Hu, J. Mater, Sci. 26, 1619–1624 (2015)

    CAS  Google Scholar 

  43. J. Kim, M. Zhang, W. Bosze, S.D. Park, J.H. Lim, N.V. Myung, Maximizing thermoelectric properties by nanoinclusion of γ-SbTe in Sb2Te3 film via solid-state phase transition from amorphous Sb–Te electrodeposits. Nano Energy 13, 727–734 (2015)

    Article  CAS  Google Scholar 

  44. Z. Liang, M.J. Boland, K. Butrouna, D.R. Strachan, K.R. Graham, J. Mater, Chem. A 5, 15891–15900 (2017)

    CAS  Google Scholar 

  45. J. Hu, B. Liu, H. Subramanyan, B. Li, J. Zhou, J. Liu, Enhanced thermoelectric properties through minority carriers blocking in nanocomposites. J. Appl. Phys. 126, 095107 (2019)

    Article  CAS  Google Scholar 

  46. J. Mao, Y. Wang, H.S. Kim, Z. Liu, U. Saparamadu, F. Tian, K. Dahal, J. Sun, S. Chen, W. Liu, Z. Ren, High thermoelectric power factor in Cu–Ni alloy originate from potential barrier scattering of twin boundaries. Nano Energy 17, 279–289 (2015)

    Article  CAS  Google Scholar 

  47. M. Thesberg, M. Pourfath, H. Kosina, N. Neophytou, The influence of non-idealities on the thermoelectric power factor of nanostructured superlattices. J. Appl. Phys. 118, 224301 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Futter for preparing the CuI target and N. Swift for the UV-VIS spectroscopy measurements.

Funding

The Ministry of Business, Innovation and Employment, New Zealand (contract # C05X1802) and JST Mirai Program, Japan (grant no. JPMJMI19A1). TM was supported by the JST Mirai Program JPMJMI19A1.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to John Kennedy.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murmu, P.P., Karthik, V., Chong, S.V. et al. Effect of native defects on thermoelectric properties of copper iodide films. emergent mater. 4, 761–768 (2021). https://doi.org/10.1007/s42247-021-00190-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00190-w

Keywords

Navigation