Skip to main content
Log in

Enhanced gas sensing performance to ethanol of ZnO based on Ag modification by a simple solid-state reaction method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, silver (Ag) nanoparticles modified zinc oxide (ZnO) nanoparticles (Ag–ZnO) were prepared by a simple solid-state reaction. Zn(NO3)2·6H2O and AgNO3 were grinded and mixed in proportion and calcined at 500 °C for 2 h. The molar ratios of Ag to Zn in the precursors were 0, 1.0, 3.0, 5.0, 7.0 and 10.0%, respectively. The microstructure of Ag–ZnO before and after modification was observed by scanning electron microscope. The existence of Ag was proved by X-ray diffraction, energy dispersive spectrum and Raman spectra. The lattice of ZnO after modification of Ag particles was changed. Ag-modified ZnO nanoparticles showed good gas sensitivity to ethanol due to the increasing oxygen vacancy amounts. The 5.0% modified Ag–ZnO based gas sensor obtained the fastest response recovery and the highest sensitivity to ethanol. The Ag–ZnO-based gas sensor will be a promising candidate in the application of ethanol detect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. J.L. Zhang, S.Y. Ma, B.J. Wang, S.T. Pei, Hydrothermal synthesis of SnO2–CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloys Compd. 886, 161299–161307 (2021)

    Google Scholar 

  2. A.M. Eyvaraghi, E. Mohammadi, N. Manavizadeh, E. Nadimi, L. Mamani, F.A. Broumand, M.A. Zeidabadi, Experimental and density functional theory computation studies on highly sensitive ethanol gas sensor based on Au-decorated ZnO nanoparticles. Thin Solid Films 22, 139014–139019 (2021)

    Google Scholar 

  3. S.F. Tseng, C.W. Chen, Synthesis of nanograiny SnO2-films on laser-patterned graphene/ceramic substrates for low-temperature ethanol gas sensors. Ceram. Int. 47, 33498–33508 (2021)

    Google Scholar 

  4. H. Sheng, S.Y. Ma, T. Han, P.D. Yun, T.T. Yang, J.F. Ren, A highly sensitivity and anti-humidity gas sensor for ethanol detection with NdFeO3 nano-coral granules. Vacuum 195, 110642–110648 (2022)

    ADS  Google Scholar 

  5. X.F. Zhang, W.J. Du, Q. Li, C.P. Lv, Highly efficient ethanol vapour detection using g-C3N4/ZnO micro flower-like heterostructural composites. RSC Adv. 12, 20618–20627 (2022)

    ADS  Google Scholar 

  6. Y.D. Zhang, Z. Zheng, F.L. Yang, Highly sensitive and selective alcohol sensors based on Ag-doped In2O3 coating. Ind. Eng. Chem. Res. 49, 3539–3543 (2010)

    Google Scholar 

  7. P.P. Wang, Q. Qi, R.F. Xuan, J. Zhao, L.J. Zhou, G.D. Li, A facile method for enhancing the sensing performance of zinc oxide nanofibers gas sensors. RSC Adv. 3, 19853–19856 (2013)

    ADS  Google Scholar 

  8. K. Kim, P.G. Choi, T. Itoh, Y. Masuda, Catalyst-free highly sensitive SnO2 nanosheet gas sensors for parts per billion-level detection of acetone. ACS Appl. Mater. Interface 12, 51637–51644 (2020)

    Google Scholar 

  9. N. Nath, A. Kumar, S. Chakroborty, S. Soren, A. Barik, K. Pal, Carbon nanostructure embedded novel sensor implementation for detection of aromatic volatile organic compounds: an organized review. ACS Omega 5, 4436–4452 (2023)

    Google Scholar 

  10. K. Pal, S. Chakroborty, N. Nath, Limitations of nanomaterials insights in green chemistry sustainable route: review on novel applications. Green Process. Synth. 11, 951–964 (2022)

    Google Scholar 

  11. K. Pal, N. Asthana, A.A. Aljabali, S.K. Bhardwaj, S. Kralj, A. Penkova, S. Thomas, T. Zaheer, F.G. Souza, A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: nano-imaging and biosensor applications. Critical Rev Solid State Mater. Sci. 47, 1–17 (2021)

    Google Scholar 

  12. K. Pal, A. Si, G.S. El-Sayyad, M.A. Elkodous, R. Kumar, A.I. El-Batal, S. Kralj, S. Thomas, Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Critical Rev Solid State Mater. Sci. 46, 385–449 (2021)

    ADS  Google Scholar 

  13. M.S. Choi, M.Y. Kim, A. Mirzaei, H.S. Kim, S. Kim, S.H. Baek, D.W. Chun, C. Jin, K.H. Lee, Selective, sensitive and stable NO2 gas sensor based on porous ZnO nanosheets. Appl. Surf. Sci. 568, 150910–150917 (2021)

    Google Scholar 

  14. K.G. Krishna, G. Umadevi, S. Parne, N. Pothukanuri, Zinc oxide based gas sensors and their derivatives: a critical review. J. Mater. Chem. C 11, 3906–3925 (2023)

    Google Scholar 

  15. C.M. Lou, K. Wang, H.S. Mei, J.Y. Xie, W. Zheng, X.H. Liu, J. Zhang, ZnO nanoarrays via a thermal decomposition-deposition method for sensitive and selective NO2 detection. Cryst. Eng. Commun. 23, 3654–3663 (2021)

    Google Scholar 

  16. Y.D. Zhang, L.W. Wang, L.W. Mi, F.L. Yang, Z. Zheng, Silica-controlled structure and optical properties of zinc oxide sol-gel thin films. J. Mater. Res. 26, 882–888 (2011)

    ADS  Google Scholar 

  17. C.L. Li, Z.G. Zang, C. Han, Z.P. Hu, X.S. Tang, J. Du, K. Sun, Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40, 195–202 (2017)

    Google Scholar 

  18. H.X. Wang, S.L. Cao, B. Yang, H.Y. Li, M. Wang, X.F. Sun, Z.G. Zang, NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process. Solar RRL 4, 1–8 (2020)

    Google Scholar 

  19. C.L. Li, C. Han, Y.B. Zhang, Z.G. Zang, M. Wang, X.S. Tang, J.H. Du, Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Sol. Energ. Mater. Sol. Cells 172, 341–346 (2017)

    Google Scholar 

  20. S.L. Cao, H.X. Wang, H.Y. Li, J.Z. Chen, Z.G. Zang, Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem. Eng. J. 394, 124903–124911 (2020)

    Google Scholar 

  21. H.X. Wang, P.F. Zhang, Z.G. Zang, High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Appl. Phys. Lett. 116, 162103–162107 (2020)

    ADS  Google Scholar 

  22. D. Banerjee, P. Banerjee, A.K. Kar, Insights into the impact of photophysical process and defect state evolution on the emission properties of surface-modified ZnO nanoplates for application in photocatalysis and hybrid LEDs. Phys. Chem. Chem. Phys. 24, 2424–2440 (2022)

    Google Scholar 

  23. J.H. Sun, J.H. Huang, X.Y. Lan, F.C. Zhang, L.Z. Zhao, Y. Zhang, Enhancing the performance of blue quantum-dot light-emitting diodes through the incorporation of polyethylene glycol to passivate ZnO as an electron transport layer. RSC Adv. 10, 23121–23127 (2020)

    ADS  Google Scholar 

  24. Y.L. Kang, F. Yu, L. Zhang, W.H. Wang, L. Chen, Y.C. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 360, 115544–115552 (2021)

    Google Scholar 

  25. A.M. Ramesh, K. Pal, A. Kodandaram, B.L. Manjula, D.K. Ravishankar, H.G. Gowtham, M. Murali, A. Rahdar, G.Z. Kyzas, Antioxidant and photocatalytic properties of zinc oxide nanoparticles phyto-fabricated using the aqueous leaf extract of Sida acuta. Green Process. Synth. 11, 857–867 (2022)

    Google Scholar 

  26. A. Fatima, T. Zaheer, K. Pal, R. Abbas, T. Akhtar, S. Ali, M.S. Mahmood, Zinc oxide nanoparticles significant role in poultry and novel toxicological mechanisms. Biol. Trace Elem. Res. (2023). https://doi.org/10.1007/s12011-023-03651-x

    Article  Google Scholar 

  27. T. Zaheer, M. Imran, K. Pal, M.S. Sajid, R.Z. Abbas, A.I. Aqib, M.A. Hanif, S.R. Khan, M.K. Khan, Z.D. Sindhu, S. Rahman, Synthesis, characterization and acaricidal activity of green-mediated ZnO nanoparticles against Hyalomma ticks. J. Mol. Struct. 1227, 129652–129658 (2021)

    Google Scholar 

  28. S.M. Majhi, P. Rai, Y.T. Yu, Facile approach to synthesize Au@ZnO core-shell nanoparticles and their application for highly sensitive and selective gas sensors. ACS Appl. Mater. Interface 7, 9462–9468 (2015)

    Google Scholar 

  29. G.X. Zhu, Y.J. Liu, H. Xu, Y. Chen, X.P. Shen, Z. Xu, Photochemical deposition of Ag nanocrystals on hierarchical ZnO microspheres and their enhanced gas-sensing properties. Cryst. Eng. Commun. 14, 719–725 (2012)

    Google Scholar 

  30. J. Ding, J.W. Zhu, P.C. Yao, J. Li, H.P. Bi, X. Wang, Synthesis of ZnO-Ag hybrids and their gas-sensing performance toward ethanol. Ind. Eng. Chem. Res. 54, 8947–8953 (2015)

    Google Scholar 

  31. S. Sagadevan, K. Pal, Z.Z. Chowdhury, M.E. Hoque, Structural, dielectric and optical investigation of chemically synthesized Ag–ZnO nanoparticles composites. J. Sol Gel Sci. Technol. 83, 394–404 (2017)

    Google Scholar 

  32. H.R. Yousefi, B. Hashemi, A. Mirzaei, H. Roshan, M.H. Sheikhi, Effect of Ag on the ZnO nanoparticles properties as an ethanol vapor sensor. Mater. Sci. Semicond. Process. 117, 105172–105179 (2020)

    Google Scholar 

  33. Q.A. Drmosh, Y.A. Wajih, I.O. Alade, A.K. Mohamedkhair, M. Qamar, A.S. Hakeem, Z.H. Yamani, Engineering the depletion layer of Au modified ZnO/Ag core-shell films for high-performance acetone gas sensing. Sens. Actuators B Chem. 338, 129851–129857 (2021)

    Google Scholar 

  34. L.S. Zhou, J.H. Bai, Y.Y. Liu, F.M. Liu, H.T. Wang, Y.Q. Zhang, G.Y. Lu, Highly sensitive C2H2 gas sensor based on Ag modified ZnO nanorods. Ceram. Int. 46, 15764–15771 (2020)

    Google Scholar 

  35. O. Lupan, V. Cretu, V. Postica, M. Ahmadi, B.R. Cuenya, L. Chow, I. Tiginyanu, B. Viana, T. Pauporte, R. Adelung, Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in response. Sens. Actuators B Chem. 223, 893–903 (2016)

    Google Scholar 

  36. S. Wang, F.C. Jia, X.M. Wang, L.Q. Hu, Y.P. Sun, G.C. Yin, T. Zhou, Z.Y. Feng, P. Kumar, B. Liu, Fabrication of ZnO nanoparticles modified by uniformly dispersed Ag nanoparticles: enhancement of gas sensing performance. ACS Omega 5, 5209–5218 (2020)

    Google Scholar 

  37. S.K. Mishara, U.K. Tripathi, R. Kumar, R.K. Shukla, Defects mediated optical emissions and efficient photodetection characteristics of sol-gel derived Ag-doped ZnO nanostructures for UV sensor. Mater. Lett. 9, 131242–131244 (2021)

    Google Scholar 

  38. L.M. Fermandez, A.S. Fermandez, G.F. Carrasco, O. Milosevic, M.E. Rabanal, Solvothermal synthesis of Ag/ZnO micro/nanostructures with different precursors for advanced photocatalytic applications. Adv. Powder Technol. 28, 83–92 (2017)

    Google Scholar 

  39. F. Lu, J.G. Wang, Z.J. Chang, J. Zeng, Uniform deposition of Ag nanoparticles on ZnO nanorod arrays grown on polyimide/Ag nanofibers by electrospinning, hydrothermal and photoreduction process. Mater. Des. 181, 108069–108074 (2019)

    Google Scholar 

  40. A.H. Rakhsha, H. Abdizadeh, E. Pourshaban, M.R. Golobostanford, V.R. Mastelaro, M. Montazerian, Ag and Cu doped ZnO nanowires: a pH-controlled synthesis via chemical bath deposition. Materialia 5, 100212–100217 (2019)

    Google Scholar 

  41. F.L. Meng, X. Shi, Z.Y. Yuan, H.Y. Ji, W.B. Qin, Y.B. Shen, C.Y. Xing, Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sens. Actuators B Chem. 350, 130867–130873 (2022)

    Google Scholar 

  42. A.I. Khudiar, A.M. Ofui, Effect of pulsed laser deposition on the physical properties of ZnO nanocrystalline gas sensors. Opt. Mater. 115, 111010–111017 (2021)

    Google Scholar 

  43. A. Sholehah, K. Karmala, N. Huda, L. Utari, N.L.W. Septiani, B. Yuliarto, Structural effect of ZnO-Ag chemoresistive sensor on flexible substrate for ethylene gas detection. Sens. Actuators A Phys. 331, 112934–112939 (2021)

    Google Scholar 

  44. C. Feng, F. Wen, Z.H. Ying, L.L. Li, X.L. Zheng, P. Zheng, G.F. Wang, Polypeptide-assisted hydrothermal synthesis of ZnO for room temperature NO2 gas sensor under UV illumination. Chem. Phys. Lett. 754, 137745–137749 (2020)

    Google Scholar 

  45. V.S. Bhati, M. Hajamberdiev, M. Kumar, Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review. Energy Rep. 6, 46–62 (2020)

    Google Scholar 

  46. L.M. Li, Z.F. Du, T.H. Wang, Enhanced sensing properties of defect-controlled ZnO nanotetrapods arising from aluminum doping. Sens. Actuators B Chem. 147, 165–169 (2010)

    Google Scholar 

  47. B.C. Cheng, Y.H. Xiao, G.S. Wu, L.D. Zhang, The vibrational properties of one-dimensional ZnO: Ce nanostructures. Appl. Phys. Lett. 84, 416–418 (2004)

    ADS  Google Scholar 

  48. X.M. Wang, C.Q. Yu, J.X. Wu, Y.D. Zhang, Template-free hydrothermal synthesis of ZnO microrods for gas sensor application. Ionics 19, 355–360 (2013)

    Google Scholar 

  49. Q.P. Zhang, Z.M. Pang, W.Y. Hu, J. Li, Y.T. Liu, Y.L. Liu, F. Yu, C.W. Zhang, M. Xu, Performance degradation mechanism of the light-activated room temperature NO2 gas sensor based on Ag–ZnO nanoparticles. Appl. Surf. Sci. 541, 148418–148425 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of the National Natural Science Foundation of China (Grant no. 62274141).

Author information

Authors and Affiliations

Authors

Contributions

YZ, conceptualization and writing. ZD, validation and analysis. HJ, funding acquisition.

Corresponding author

Correspondence to Yidong Zhang.

Ethics declarations

Conflict of interest

We have no interest conflict, including the internet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dong, Z. & Jia, H. Enhanced gas sensing performance to ethanol of ZnO based on Ag modification by a simple solid-state reaction method. Appl. Phys. A 129, 666 (2023). https://doi.org/10.1007/s00339-023-06952-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06952-z

Keywords

Navigation