Skip to main content
Log in

Fracture complexions of a nanocrystalline microstructure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nano-dimple fracture complexions assessed from the published tensile fracture surfaces are perceived to predict the trend of variation in deformation and fracture properties of a supersaturated nanocrystalline face-centered cubic Cu–Co alloy with systematic isothermal annealing treatment. The alteration of different microstructural disposition that led to change in fracture complexions have been quantified, compared and interpreted with the respective mechanical properties of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data accessibility

The data consist of experimental and analytical outputs that have been plotted in the figures in the manuscript. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. Complex interplay between initial microstructural features and stress/strain field generated due to tension. Before tensile tests, the initial microstructures are different due to variation in annealing states (and after deformation), see Table 1.

Abbreviations

ar:

Grain aspect ratio

ATP:

Atom probe tomography

bcc:

Body centered cubic

BSE:

Backscatter electron

\(\mu\) :

Dimple intercept length, Dimple size

\(\dot{\epsilon }\) :

Strain rate

\(\eta\) :

Median of dimple sizes

\(\epsilon _\textrm{p}\) :

Plastic strain

\(\epsilon _\textrm{N}\) :

Void nucleation strain

EL:

Total elongation

f v :

Void volume fraction

f :

Dimple frequency

fcc:

Face centered cubic

FEL:

Elongation to fracture

G :

Dimple size numbers

GB:

Grain boundary

GBTP:

Grain boundary triple points

GS:

Grain size

HEXRD:

In situ high-energy X-ray diffraction

hcp:

Hexagonal close pack

HPT:

High pressure torsion

H/T :

Heat treatment

lp:

Lattice parameter

Mo:

Mode of dimple sizes

n :

Dimple number density

RA:

Reduction in area

\(\rho\) :

Dislocation density

\(\sigma\) :

Standard deviation of dimple sizes

\(\sigma ^2\) :

Variance of dimple sizes

SE:

Secondary electron imaging

SEM:

Scanning electron microscope

\(\tau\) :

Stress triaxiality

\(\sigma _\textrm{h}\) :

Hydrostatic tensile stress

\(\sigma _\textrm{N}\) :

Void nucleation stress

U :

Deformation energy, area under ‘stress–strain’ curves

UEL:

Uniform elongation

UTS:

Ultimate tensile strength

YS:

Yield strength

References

  1. https://en.wikipedia.org/wiki/Complexion

  2. P.J. Noell, J.D. Carroll, B.L. Boyce, Acta Mater. 161, 83 (2018)

    ADS  Google Scholar 

  3. G.A. Pantazopoulos, Metals 9, 148 (2019)

    Google Scholar 

  4. A. Das, S. Tarafder, Int. J. Plast. 25, 2222 (2009)

    Google Scholar 

  5. A. Das, S. Tarafder, Scr. Mater. 59, 1014 (2008)

    Google Scholar 

  6. A. Das, Metall. Mater. Trans. A 49, 1425 (2018)

    Google Scholar 

  7. A. Das, Philos. Mag. 97, 3084 (2017)

    ADS  Google Scholar 

  8. A. Das, J.K. Chakravartty, Surf. Topog. Metrol. Prop. 5, 045006 (2017)

    ADS  Google Scholar 

  9. A. Das, C.B. Basak, Philos. Mag. 98, 3007 (2018)

    ADS  Google Scholar 

  10. A. Das, Mater. Chem. Phys. 290, 126434 (2022)

    Google Scholar 

  11. A. Das, J. Mater. Civil Eng. 35, 04023057 (2023)

    Google Scholar 

  12. A. Das, S.K. Das, S. Tarafder, Metall. Mater. Trans. A 40, 3138 (2009)

  13. C. Ruggieri, R.H. Dodds, Int. J. Fract. 79, 309–340 (1996)

    Google Scholar 

  14. W.M. Garrison Jr., N.R. Moody, J. Phys. Chem. Sol. 48, 1035 (1987)

    ADS  Google Scholar 

  15. S.H. Goods, L.M. Brown. Perspect. Creep Fract. (1983) 71

  16. D. Broek, Eng. Frac. Mech. 5, 55 (1973)

    ADS  Google Scholar 

  17. A. Das, Arch. Comp. Methods Eng. 28, 1795 (2021)

    Google Scholar 

  18. A.A. Benzerga, J. Besson, A. Pineau, Acta Mater. 52, 4623 (2004)

    ADS  Google Scholar 

  19. Y. Bao, T. Wierzbicki, Int. J. Mech. Sci. 46, 81 (2004)

    Google Scholar 

  20. H. Li, M. Fu, J. Lu, H. Yang, Int. J. Plast. 27, 147 (2011)

    ADS  Google Scholar 

  21. T.F. Morgeneyer, T. Taillandier-Thomas, L. Helfen, T. Baurnbach, I. Sinclair, S. Roux, F. Hild, Acta Mater. 69, 78 (2014)

    ADS  Google Scholar 

  22. C. Tekoglu, J. Hutchinson, T. Pardoen, Phil. Trans. R. Soc. A 373, 20140121 (2015)

    ADS  Google Scholar 

  23. A. Buljac, T. Taillandier-Thomas, T.F. Morgeneyer, L. Helfen, S. Roux, F. Hild, Int. J. Fract. 200, 49 (2016)

    Google Scholar 

  24. G. Pantazopoulos, A. Toulfatzis, A. Vazdirvanidis, A. Rikos, Metall. Micro. Anal. 5, 149 (2016)

    Google Scholar 

  25. A. Das, Scr. Mater. 68, 514 (2013)

    Google Scholar 

  26. A. Das, Mater. Res. Expr. 3, 066501 (2016)

    ADS  Google Scholar 

  27. A. Das, Mater. Sci. Technol. 32, 1366 (2016)

    ADS  Google Scholar 

  28. J.R. Rice, D.M. Tracey, J. Mech. Phys. Sol. 17, 201 (1969)

    ADS  Google Scholar 

  29. A.L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977)

    Google Scholar 

  30. J.W. Hutchinson, V. Tvergaard, Inter. J. Sol. Str. 17, 451 (1981)

    Google Scholar 

  31. V. Tvergaard, A. Needleman, Acta Metall. 32, 157 (1984)

    Google Scholar 

  32. V. Tvergaard, J.W. Hutchinson, Int. J. Sol. Str. 39, 3581 (2002)

    Google Scholar 

  33. V.I. Levitas, N.S. Altukhova, Acta Mater. 59, 7051 (2011)

    ADS  Google Scholar 

  34. R.D. Thomson, J.W. Hancock, Int. J. Fract. 26, 99 (1984)

    Google Scholar 

  35. M. Zawodzki, L. Weissitsch, H. Krenn, S. Wurster, A. Bachmaier, Nanomaterials 13, 344 (2023)

    Google Scholar 

  36. V.A. Pozdnyakov, A.M. Glezer, Phys. Sol. State 47, 817 (2005)

    ADS  Google Scholar 

  37. S. Kobayashi, S. Tsurekawa, T. Watanabe, Beilst. J. Nanotech. 7, 1829 (2016)

    Google Scholar 

  38. W.H. Kim, C. Laird, Acta Metall. 26, 789 (1978)

    Google Scholar 

  39. Z.F. Zhang, Z.G. Wang, Prog. Mater. Sci. 53, 1025 (2008)

    Google Scholar 

  40. S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa, T. Watanabe, J. Mater. Sci. 43, 3792 (2008)

    ADS  Google Scholar 

  41. A. Heinz, P. Neumann, Acta Metall. Mater. 38, 1933 (1990)

    Google Scholar 

  42. S. Kobayashi, M. Hirata, S. Tsurekawa, T. Watanabe, Proc. Eng. 10, 112 (2011)

    Google Scholar 

  43. S. Kobayashi, M. Nakamura, S. Tsurekawa, T. Watanabe, J. Mater. Sci. 46, 4254 (2011)

    ADS  Google Scholar 

  44. T. Watanabe, S. Tsurekawa, S. Kobayashi, S.I. Yamaura, Mater. Sci. Eng. A 410, 140 (2005)

    Google Scholar 

  45. A. Das, Philos. Mag. 97, 867 (2017)

    ADS  Google Scholar 

  46. T. Watanabe, Res. Mech. 11, 47 (1984)

    Google Scholar 

  47. A. Bachmaier, G.B. Rathmayr, J. Schmauch, N. Schell, A. Stark, N. De Jonge, R. Pippan, J. Mater. Res. 34, 58 (2019)

    ADS  Google Scholar 

  48. R.S. Iskhakov, L.A. Kuzovnikova, E.A. Denisova, S.V. Komogortsev, A.D. Balaev, Phys. Met. Metall. 107, 478 (2009)

    Google Scholar 

  49. A. Bachmaier, M. Pfaff, M. Stolpe, H. Aboulfadl, C. Motz, Acta Mater. 96, 269 (2015)

    ADS  Google Scholar 

  50. A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, G. Thomas, Phys. Rev. Lett. 68, 3745 (1992)

    ADS  Google Scholar 

  51. J. Wecker, R. von Helmolt, L. Schultz, K. Samwer, Appl. Phys. Lett. 62, 1985 (1993)

    ADS  Google Scholar 

  52. A. Tsoukatos, H. Wan, G.C. Hadjipanayis, Nanostruct. Mater. 4, 49 (1994)

    Google Scholar 

  53. R.H. Yu, X.X. Zhang, J. Tejada, M. Knobel, P. Tiberto, P. Allia, J. Appl. Phys. 78, 392 (1995)

    ADS  Google Scholar 

  54. M.G.M. Miranda, E. Estevez-Rams, G. Martinez, M.N. Baibich, Phys. Rev. B 68, 014434 (2003)

    ADS  Google Scholar 

  55. A. Bachmaier, H. Aboulfadl, M. Pfaff, F. Mucklich, C. Motz, Mater. Char. 100, 178 (2015)

    Google Scholar 

  56. A. Bachmaier, J. Schmauch, H. Aboulfadl, A. Verch, C. Motz, Acta Mater. 115, 333 (2016)

    ADS  Google Scholar 

  57. A. Bachmaier, H. Krenn, P. Knoll, H. Aboulfadl, R. Pippan, J. Alloys Compd. 725, 744 (2017)

    Google Scholar 

  58. A. Bachmaier, M. Stolpe, T. Muller, C. Motz, IOP Conf. Ser. Mater. Sci. Eng. 89, 012017 (2015)

  59. M. Stuckler, J. Zalesak, T. Muller, S. Wurster, L. Weissitsch, M. Meier, P. Felfer, C. Gammer, R. Pippan, A. Bachmaier, J. Alloys Compd. 901, 163616 (2022)

    Google Scholar 

  60. R.J. Parrington, Pract. Fail. Anal. 2, 16 (2002)

    Google Scholar 

  61. I. Konovalenko, P. Maruschak, O. Prentkovskis, R. Junevius, Materials 11, 2467 (2018)

    ADS  Google Scholar 

  62. I. Konovalenko, P. Maruschak, J. Brezinova, J. Brezina, Materials 12, 2051 (2019)

    ADS  Google Scholar 

  63. W. Macek, Z. Marciniak, R. Branco, D. Rozumek, G.M. Krolczyk, Measurement 178, 109443 (2021)

    Google Scholar 

  64. W. Macek, R. Owsiski, J. Trembacz, R. Branco, Mech. Mater. 147, 103410 (2020)

    Google Scholar 

  65. R.Y. Kosarevych, O.Z. Student, L.M. Svirska, B.P. Rusyn, H.M. Nykyforchyn, Mater. Sci. 48, 474 (2013)

    Google Scholar 

  66. O.A. Hilders, N.D. Pena, M. Ramos, L. Saenz, L. Berrio, R.A. Caballero, A. Quintero, Mater. Sci. For. 396, 1321 (2002)

    Google Scholar 

  67. W. Qin, J. Li, Y. Liu, J. Kang, L. Zhu, D. Shu, P. Peng, D. She, D. Meng, Y. Li, Mater. Lett. 254, 116 (2019)

    Google Scholar 

  68. A. Bachmaier, E. Neubauer, M. Kitzmantel, R. Pippan, C. Motz, I.O.P. Conf, Ser. Mater. Sci. Eng. 63, 012023 (2014)

    Google Scholar 

  69. R. Busch, F. Gartner, C. Borchers, P. Haasen, R. Bormann, Acta Mater. 44, 2567 (1996)

    ADS  Google Scholar 

  70. I.A. Ovidko, J. Mater. Sci. 42, 1694 (2007)

    ADS  Google Scholar 

  71. H. Gleiter, Acta Mater. 48, 1 (2000)

    ADS  Google Scholar 

  72. K.S. Kumar, S. Suresh, H. Van Swygenhoven, Acta Mater. 51, 5743 (2003)

    ADS  Google Scholar 

  73. R.Z. Valiev, Nat. Mater. 3, 511 (2004)

    ADS  Google Scholar 

  74. I.A. Ovidko, Int. Mater. Rev. 50, 65 (2005)

    Google Scholar 

  75. B.Q. Han, E. Lavernia, F.A. Mohamed, Rev. Adv. Mater. Sci. 9, 1 (2004)

    Google Scholar 

  76. D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Acta Mater. 53, 1 (2005)

    ADS  Google Scholar 

  77. R.E. Robertson, V.E. Mindroiu, Polym. Eng. Sci. 27, 55 (1987)

    Google Scholar 

  78. A. Das, Mater. Lett. 337, 133954 (2023)

    Google Scholar 

  79. A. Hohenwarter, R. Pippan, Acta Mater. 61, 2973 (2013)

    ADS  Google Scholar 

  80. R. Pippan, A. Hohenwarter, Mater. Res. Lett. 4, 127 (2016)

    Google Scholar 

  81. N. Hansen, Scr. Mater. 51, 801 (2004)

    Google Scholar 

  82. A.A. Nazarov, A.E. Romanov, R.Z. Valiev, Acta Metall. Mater. 41, 1033 (1993)

    Google Scholar 

  83. M.Z. Butt, P. Feltham, J. Mater. Sci. 28, 2557 (1993)

    ADS  Google Scholar 

  84. R.L. Fleischer, Acta Metall. 11, 203 (1963)

    Google Scholar 

  85. R. Labusch, Acta Metall. 20, 917 (1972)

    Google Scholar 

  86. B. Oberdorfer, D. Setman, E.M. Steyskal, A. Hohenwarter, W. Sprengel, M. Zehetbauer, R. Pippan, R. Wurschum, Acta Mater. 68, 189 (2014)

    ADS  Google Scholar 

  87. E. Ma, T.D. Shen, X.L. Wu, Nat. Mater. 5, 515 (2006)

    ADS  Google Scholar 

  88. X. Huang, N. Hansen, N. Tsuji, Science 312, 249 (2006)

    ADS  Google Scholar 

  89. D. Hull, Fractography: Observing, Measuring and Interpreting the Fracture Surface Topography (Cambridge University Press, Cambridge, UK, 1999)

    Google Scholar 

  90. D. Bhattacharjee, J.F. Knott, Int. J. Fract. 72, 359 (1995)

    Google Scholar 

  91. V. Kerlins, A. Phillips, Fractography, in ASM Hand Book, vol. 12, (ASM International Materials Park, OH, 1999), p.12

    Google Scholar 

  92. K. Spencer, S. Corbin, D. Lloyd, Mater. Sci. Eng. A 325, 394 (2002)

    Google Scholar 

  93. A. Ghahremaninezhad, K. Ravi-Chandar, Int. J. Sol. Str. 48, 3299 (2011)

    Google Scholar 

  94. A.W. Thompson, Metall. Trans. A 18, 1877 (1987)

    Google Scholar 

  95. J. Liu, X. Fan, Y. Shi, D.J. Singh, W. Zheng, Fat. Fract. Eng. Mater. Str. 44, 1850 (2021)

    Google Scholar 

  96. D. Farkas, S. Van Petegem, P.M. Derlet, H. Van Swygenhoven, Acta Mater. 53, 3115 (2005)

    ADS  Google Scholar 

  97. D. Farkas, Metall. Mater. Trans. A 38, 2168 (2007)

    Google Scholar 

  98. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang, Acta Mater. 51, 387 (2003)

    ADS  Google Scholar 

  99. P. Noell, J. Carroll, K. Hattar, B. Clark, B. Boyce, Acta Mater. 137, 113 (2017)

    ADS  Google Scholar 

  100. N. Hansen, R.F. Mehl, Metall. Mater. Trans. A 32, 2917 (2001)

    Google Scholar 

  101. S.P. Lynch, S. Moutsos, J. Fail. Anal. Prev. 6, 54 (2006)

    Google Scholar 

  102. C.D. Beachem, in Microscopic Fracture Processes in Fracture, An Advanced Treatise, Microscopic and Macroscopic Fundamentals, vol. 1, ed. by H. Liebowitz (Academic Press, New York, 1968)

  103. R.H. Van Stone, T.B. Cox, J.R. Low Jr., J.A. Psioda, Int. Met. Rev. 30, 157 (1985)

    Google Scholar 

  104. T. Pardoen, J.W. Hutchinson, Acta Mater. 51, 133 (2003)

    ADS  Google Scholar 

  105. A. Das, Phase transformation during tensile and low cycle fatigue deformation of AISI 304LN stainless steel (Doctoral dissertation, Jadavpur University, Kolkata) (2013)

  106. Y. Sun, X. Li, X. Yu, D. Ge, J. Chen, J. Chen, Acta Metall. Sin. 27, 101 (2014)

    Google Scholar 

  107. M. Madivala, A. Schwedt, U. Prahl, W. Bleck, Int. J. Plast. 115, 178 (2019)

    Google Scholar 

  108. W.S. Lee, C.-F. Lin, S.Z. Huang, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 220, 127 (2006)

    Google Scholar 

  109. Y. Wang, O. Mohamed, K. Dunn, T. Sui, M. Bashir, P. Cooper, A. Lukenskas, G. Wu, M. Gorley, J. Nucl. Mater. 543, 152546 (2021)

    Google Scholar 

  110. S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han, Acta Mater. 53, 1521 (2005)

    ADS  Google Scholar 

  111. W. Cahn, Acta Metall. 11, 1275 (1963)

    Google Scholar 

  112. Y. Hanai, T. Miyazaki, H. Mori, J. Mater. Sci. 14, 599 (1979)

    ADS  Google Scholar 

  113. S.D. Dahlgren, Metall. Mater. Trans. A 8, 347 (1977)

    ADS  Google Scholar 

  114. M. Kato, T. Mori, L.H. Schwartz, Acta Metall. Mater. 28, 285 (1980)

    Google Scholar 

  115. R.W. Carpenter, Acta Metall. 15, 1297 (1967)

    Google Scholar 

  116. G.E. Dieter, D. Bacon, Mechanical metallurgy, vol. 3 (McGraw-Hill, New York, 1976), pp.43–53

    Google Scholar 

  117. R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov, X. Sauvage, Scr. Mater. 63, 949 (2010)

    Google Scholar 

  118. F. Tang, D.S. Gianola, M.P. Moody, K.J. Hemker, J.M. Cairney, Acta Mater. 60, 1038 (2012)

    ADS  Google Scholar 

  119. E. Ma, Scr. Mater. 49, 663 (2003)

    Google Scholar 

  120. E. Ma, JOM 58, 49 (2006)

    Google Scholar 

  121. Y. Zhao, Y. Zhu, E.J. Lavernia, Adv. Eng. Mater. 12, 769 (2010)

    Google Scholar 

  122. N. Vu-Bac, T. Lahmer, X. Zhuang, T. Nguyen-Thoi, T. Rabczuk, Adv. Eng. Soft. 100, 19 (2016)

    Google Scholar 

  123. T. Rabczuk, T. Belytschko, Int. J. Numer. Methods Eng. 61, 2316 (2004)

    Google Scholar 

  124. M. Silani, S. Ziaei-Rad, H. Talebi, T. Rabczuk, Theor. Appl. Fract. Mech. 74, 30 (2014)

    Google Scholar 

  125. P.R. Budarapu, T. Rabczuk, J. Ind. Inst. Sci. 97, 339 (2017)

    Google Scholar 

  126. H. Talebi, M. Silani, S.P. Bordas, P. Kerfriden, T. Rabczuk, Comp. Mech. 53, 1047 (2014)

    ADS  Google Scholar 

  127. M. Salviato, M. Zappalorto, M. Quaresimin, Comp. A Appl. Sci. Manuf. 48, 144 (2013)

    Google Scholar 

  128. M. Zappalorto, M. Salviato, M. Quaresimin, Comp. Sci. Tech. 72, 1683 (2012)

    Google Scholar 

  129. B. Lauke, Comp. Sci. Tech. 68, 3365 (2008)

    Google Scholar 

  130. A. Jafari, A.A. Khatibi, M.M. Mashhadi, Comp. B Eng. 42, 553 (2010)

    Google Scholar 

  131. Y. Dai, Y.W. Mai, X. Ji, Comp. B Eng. 39, 1062 (2008)

    Google Scholar 

  132. J.G. Williams, Comp. Sci. Tech. 70, 885 (2010)

    Google Scholar 

  133. P. Chakraborty, Y. Zhang, M.R. Tonks, Comp. Mater. Sci. 113, 38 (2016)

    Google Scholar 

  134. G.M. Odegard, Multiscale modeling of nanocomposite materials, in Virtual Testing and Predictive Modeling: For Fatigue and Fracture Mechanics Allowables. (Springer, New York, 2009), pp.221–245

    Google Scholar 

  135. F. Ebrahimi, A. Dabbagh, J. Comp. Appl. Mech. 50, 197 (2019)

    Google Scholar 

  136. M.F. Horstemeyer, Multiscale modeling: a review, in Practical Aspects of Computational Chemistry: Methods. (Concepts and Applications. Springer, Dordrecht, 2010), pp.87–135

    Google Scholar 

  137. H. Wang, H. Shin, Multiscale Sci. Eng. 4, 1 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

The insightful suggestions, comments and strong recommendations about the manuscript by the anonymous reviewers are gratefully appreciated. The comments were very helpful in improving the paper quality.

Funding

The author received no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Arpan Das.

Ethics declarations

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Human/animal rights

This article does not contain any studies with human or animal subjects performed by author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A. Fracture complexions of a nanocrystalline microstructure. Appl. Phys. A 129, 667 (2023). https://doi.org/10.1007/s00339-023-06913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06913-6

Keywords

Navigation