Skip to main content
Log in

Fracture toughness of Cu and Ni single crystals with a nanocrack

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fracture toughness values of nanosized Cu and Ni single crystals with an edge nanocrack were determined under quasi-static loading conditions. Molecular statics (MS) simulations that can essentially capture the discreteness and the nonlinearity of materials were used in the present study. Different crack lengths were used to evaluate the effects of crack size on the fracture toughness. Based on MS simulations, the energy release rate was calculated using the energies obtained from two models with neighboring crack lengths under the same loading conditions. Furthermore, continuum counterparts of the atomistic models were used to calculate the toughness by the finite element method for linear elastic fracture mechanics (LEFM). The reasons behind the discrepancies between the toughness values obtained using different methods were discussed, and the applicable ranges of the toughness and the LEFM were indicated in terms of the lattice constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. Y. Wang, M. Chen, F. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    Article  CAS  Google Scholar 

  2. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  3. P. Gumbsch: An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling. J. Mater. Res. 10, 2897 (1995).

    Article  CAS  Google Scholar 

  4. Y.G. Xu, K. Behdinan, and Z. Fawaz: Molecular dynamics calculation of the J-integral fracture criterion for nano-sized crystals. Int. J. Fract. 130, 571 (2004).

    Article  Google Scholar 

  5. M. Karimi, T. Roarty, and T. Kaplan: Molecular dynamics simulations of crack propagation in Ni with defects. Modell. Simul. Mater. Sci. Eng. 14, 1409 (2006).

    Article  CAS  Google Scholar 

  6. Y. Guo and C. Wang: Atomistic study of lattice trapping behavior for brittle fracture in bcc-iron. Comput. Mater. Sci. 40, 376 (2007).

    Article  CAS  Google Scholar 

  7. H. Krull and H. Yuan: Suggestions to the cohesive traction–separation law from atomistic simulations. Eng. Fract. Mech. 78, 525 (2011).

    Article  Google Scholar 

  8. J. Petucci, C. LeBlond, and M. Karimi: Molecular dynamics simulations of brittle fracture in fcc crystalline materials in the presence of defects. Comput. Mater. Sci. 86, 130 (2014).

    Article  CAS  Google Scholar 

  9. A. Mattoni, L. Colombo, and F. Cleri: Atomic scale origin of crack resistance in brittle fracture. Phys. Rev. Lett. 95, 115501 (2005).

    Article  CAS  Google Scholar 

  10. S. Zhang, T. Zhu, and T. Belytschko: Atomistic and multiscale analyses of brittle fracture in crystal lattices. Phys. Rev. B 76, 094114 (2007).

    Article  Google Scholar 

  11. A. Adnan and C.T. Sun: Evolution of nanoscale defects to planar cracks in a brittle solid. J. Mech. Phys. Solids 58, 983 (2010).

    Article  CAS  Google Scholar 

  12. C.B. Cui and H.G. Beom: Molecular dynamics simulations of edge cracks in copper and aluminum single crystals. Mater. Sci. Eng., A 609, 102 (2014).

    Article  CAS  Google Scholar 

  13. S. Plimpton: Fast parallel algorithms for short–range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  14. M.S. Daw and M.I. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  15. Y. Mishin, M. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).

    Article  Google Scholar 

  16. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393 (1999).

    Article  CAS  Google Scholar 

  17. R.J. Swenson: Comments on virial theorems for bounded systems. Am. J. Phys. 51, 940 (1983).

    Article  CAS  Google Scholar 

  18. A.K. Subramaniyan and C.T. Sun: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45, 4340 (2008).

    Article  Google Scholar 

  19. T.L. Anderson: Fracture Mechanics: Fundamental and Application, 3rd ed. (CRC Press, Boca Raton, 2005).

    Book  Google Scholar 

  20. J.R. Rice: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379 (1968).

    Article  Google Scholar 

  21. H. Tada, P.C. Paris, and G.R. Irwin: The Stress Analysis of Cracks Handbook, 3rd ed. (ASME Press, New York, 2000).

    Book  Google Scholar 

  22. Z. Suo: Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. London, Ser. A 427, 331 (1990).

    Article  CAS  Google Scholar 

  23. C.F. Shih, B. Moran, and T. Nakamura: Energy release rate along a three-dimensional crack front in a thermally stressed body. Int. J Fract. 30, 79 (1986).

    Google Scholar 

  24. J. Li: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).

    Article  Google Scholar 

  25. S. Huang, S. Zhang, T. Belytschko, S.S. Terdalkar, and T. Zhu: Mechanics of nanocrack: Fracture, dislocation emission, and amorphization. J. Mech. Phys. Solids 57, 840 (2009).

    Article  CAS  Google Scholar 

  26. R. Thomson, C. Hsieh, and V. Rana: Lattice trapping of fracture cracks. J. Appl. Phys. 42, 3154 (1971).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2A10008799) and an Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Beom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C.B., Kim, S.D. & Beom, H.G. Fracture toughness of Cu and Ni single crystals with a nanocrack. Journal of Materials Research 30, 1957–1964 (2015). https://doi.org/10.1557/jmr.2015.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.139

Navigation