Skip to main content
Log in

Fabrication and characterization of lead selenide thin film as X-ray sensors, photovoltaic devices and microwave resonators

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, thin film of \(p-\) PbSe is coated onto n-Si thin crystals to perform as multifunctional devices. The devices are fabricated by the thermal evaporation technique under a vacuum pressure of 10–5 mbar. Structural and morphological analyses have shown the preferred growth of cubic phase of lead selenide resulting in a large lattice mismatched structure at the \(n-\) Si/\(p-\) PbSe (SP) interfaces. The construction of the energy band diagram also indicated the presence of a valance band offset of 0.57 eV at the SP interfaces. These two effects together resulted in a significant photovoltaic effect presented by large–short-circuit photocurrent density of the SP devices. In addition, the SP devices performed as good X-ray sensors responsive to an X-ray (λ = 1.5405Å) beam of low and high power tested in the range of 0.1–35.0 W. Moreover, SP layers treated as microwave cavities displayed negative capacitance (NC) effect in the frequency domain of 1.2–1.8 GHz. The NC effect is controlled by two Lorentz oscillators being dominant at resonance frequencies of 0.7 and 1.2 GHz. It is found that the SP microwave cavities exhibit cutoff frequency values exceeding 10 GHz when the driving frequency is mounted at 1.2 GHz. This feature makes the SP cavities suitable for use in wireless 5G technology applications as signal filters. The ability of the SP layers to perform as photovoltaic devices, X-ray sensors and microwave cavities nominates them for use as multifunctional devices suiting modern technology needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Chen, X. Chen, L. Fang, G. Yan, X. Ning, X. San, S. Wang, Appl. Surf. Sci. 621, 156872 (2023)

    Article  Google Scholar 

  2. G. Zhang, Y. Li, Y. Liu, L. Su, Y. Luo, Y. Yang, J. Qiu, J. Phys. Chem. Lett. 13, 11176–11182 (2022)

    Article  Google Scholar 

  3. S. Abel, J.L. Tesfaye, L. Gudata, F. Lamessa, R. Shanmugam, L.P. Dwarampudi, N. Nagaprasad, R. Krishnaraj, J. Nanomater. 2022, 3108506 (2022)

    Google Scholar 

  4. B.B. Haidet, E. Hughes, K. Mukherjee, Cryst. Growth Des. 22, 3824–3833 (2022)

    Article  Google Scholar 

  5. X. Liang, Y. Feng, W. Dang, H. Huang, X. Wang, Y. Guo, K. Shen, R.E.I. Schropp, Z. Li, Y. Mai, ACS Energy Lett. 8, 213–221 (2023)

    Article  Google Scholar 

  6. M.M. Alkhamisi, A.F. Qasrawi, H.K. Khanfar, S.E. Algarni, Opt. Quant. Electron. 55, 156 (2023)

    Article  Google Scholar 

  7. L.L. McDowell, M. Rastkar Mirzaei, Z. Shi, Materials 16, 1866 (2023)

    Article  ADS  Google Scholar 

  8. R.A. Almotiri, A.F. Qasrawi, Optik 271, 170106 (2022)

    Article  ADS  Google Scholar 

  9. N. M. Khusayfan, H. K. Khanfar, S. R. Alharbi, Mater. Res. 24, (2021)

  10. D.V. Melnikov, J.R. Chelikowsky, Phys. Rev. Lett. 92, 046802 (2004)

    Article  ADS  Google Scholar 

  11. S. Roa, M. Sandoval, S. Suárez, Solid State Sci. 113, 106545 (2021)

    Article  Google Scholar 

  12. A. Begum, A. Rahman, Mater. Sci. Semiconductor Proc. 25, 231–237 (2014)

    Article  Google Scholar 

  13. S. Park, P. D. Nguyen, M. Kim, J. Jeon, Y. Kim, S. J. Lee, Advanced Solid State Lasers, (Optica Publishing Group 2022)

  14. B. Bilal, H. Najeeb-ud-Din, Opt. Mater. 124, 111957 (2022)

    Article  Google Scholar 

  15. C. Cai, Y. Zhao, S. Xie, X. Zhao, Y. Zhang, Y. Xu, C. Liang, Z. Niu, Y. Shi, Y. Li, R. Che, Small 15, 1900837 (2019)

    Article  Google Scholar 

  16. R.A. Almotiri, A.F. Qasrawi, S.E. Algarni, Phys. Scripta 97, 125811 (2022)

    Article  ADS  Google Scholar 

  17. S. M. Sze, Y. Li, K. K. Ng, Physics of Semiconductor Devices, (John wiley & sons, 2021)

  18. H. Ahmad, M. Tajdidzadeh, K. Thambiratnam, M. Yasin, Optik 172, 35–42 (2018)

    Article  ADS  Google Scholar 

  19. A.F. Qasrawi, N.M.A. Yaseen, IEEE Trans. Electron. Devices 68, 6444–6450 (2021)

    Article  ADS  Google Scholar 

  20. A.F. Qasrawi, R.B. Daragme, Phys. Status Solidi (A) 219, 2100822 (2022)

    Article  ADS  Google Scholar 

  21. S.E. Algarni, A.F. Qasrawi, N.M. Khusayfan, Phys. Status Solidi (A) 218, 2000830 (2021)

    Article  ADS  Google Scholar 

  22. R. H. Bube, Photoelectronic Properties of Semiconductors, (Cambridge University Press, 1992)

  23. W.-W. Wang, J.-S. Dang, R. Jono, H. Segawa, M. Sugimoto, Chem. Sci. 9, 3341–3353 (2018)

    Article  Google Scholar 

  24. L. Xiao, S. Yan, T. Chen, J. Wang, Y. Shi, Symmetry 14, 1628 (2022)

    Article  ADS  Google Scholar 

  25. R.A. Almotiri, A.F. Qasrawi, B.S. Agha, Appl. Phys. A 129, 289 (2023)

    Article  ADS  Google Scholar 

  26. M. Dresselhaus, G. Dresselhaus, S. B. Cronin, A. G. Souza Filho, Solid State Properties, (Alemania: Springer-Verlag, 2018)

  27. J.-T. Lü, M. Brandbyge, P. Hedegård, T.N. Todorov, D. Dundas, Phys. Rev. B 85, 245444 (2012)

    Article  ADS  Google Scholar 

  28. J. Min, G. Choe, C. Shin, Curr. Appl. Phys. 20, 1222–1225 (2020)

    Article  ADS  Google Scholar 

  29. A.H. Aly, W. Sabra, H.A. Elsayed, Int. J. Modern Phys. B 31, 1750123 (2017)

    Article  ADS  Google Scholar 

  30. L.H.K. Alfhaid, A.F. Qasrawi, Phys. Scr. 97, 055820 (2022)

    Article  ADS  Google Scholar 

  31. M.M. Rahman, M.S. Islam, H.Y. Wong, T. Alam, M.T. Islam, Sensors 19, 2634 (2019)

    Article  ADS  Google Scholar 

  32. M. V. A. M. Roopa, J. Commun. 17, (2022)

  33. M.M. Alkhamisi, H.K. Khanfar, A.F. Qasrawi, Phys. B Condensed Matter 649, 414512 (2023)

    Article  Google Scholar 

  34. J. Ma, M. Chen, S. Qiao, G. Fu, S. Wang, Opt. Express 29, 35226–35237 (2021)

    Article  ADS  Google Scholar 

  35. S.G. Krivoshlykov, V.I. Rupasov, Appl. Phys. Lett. 93, 043116 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under Grant No. (UJ-22-DR-99). The authors, therefore, acknowledge with thanks the University of Jeddah for its technical and financial support.

Funding

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under Grant No. (UJ-22-DR-99). The authors, therefore, acknowledge with thanks the University of Jeddah for its technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

NMK has shared in the review article collection, wins the fund, analyzed the X-ray data in Fig. 1a and measured the impedance spectra. SRNA calculated the Lorentz parameters and commented them. HKK guided the work, measured the data and analyzed or shared analyses of the data in all figures. He carried out the analyses.

Corresponding author

Correspondence to Hazem K. Khanfar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusayfan, N.M., Khanfar, H.K. & Alharbi, S.R.N. Fabrication and characterization of lead selenide thin film as X-ray sensors, photovoltaic devices and microwave resonators. Appl. Phys. A 129, 639 (2023). https://doi.org/10.1007/s00339-023-06909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06909-2

Keywords

Navigation