Skip to main content
Log in

Exploring the characteristics of CoMnP2O7 diphosphate: a comprehensive analysis of structure, morphology, optics, dielectrics, and electrical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The polycrystalline powder of CoMnP2O7 has been prepared via the conventional solid-state reaction route. The X-ray diffraction analysis revealed the formation of a single-phase monoclinic lattice system. The atomic positions as well as the characteristic interatomic distances and angles have been deduced through the Rietveld refinement. The SEM images indicate the polycrystalline nature of the material with grain size anisotropy. The CoMnP2O7 is identified as a wide direct band-gap material, further highlighting its potential use across a range of industries, including electronic and optical device manufacturing. Dielectric measurements have been performed in the temperature range of 298–800 K at different frequencies, and versus frequency under various temperatures. This material demonstrates promising characteristics for potential capacitor applications, as evidenced by its high dielectric constant and low losses. The CoMnP2O7 pyrophosphate presents high permittivity at low frequencies owing to Maxwell–Wagner polarization arising from the inter-grain boundaries, as confirmed through impedance spectroscopy. An equivalent circuit has been provided to model the electrical response. The ac-conductivity increases as the temperature increases, and oxygen vacancies dominate at high temperatures. The obtained results also suggest the possibility of using this material for capacitors as well as both NTC and PTC thermistors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Research data policy and data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.L. Kozlovskiy, M.V. Zdorovets, Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5–x)TeO2–0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys. 263, 124444 (2021)

    Google Scholar 

  2. R.E. El-Shater, A.S. Atlam, M.K. Elnimr, S.T. Assar, S.V. Trukhanov, D.I. Tishkevich, T.I. Zubar, A.V. Trukhanov, D. Zhou, M.A. Darwish, AC measurements, impedance spectroscopy analysis, and magnetic properties of a multiferroic composite. Mater. Sci. Eng. B 286, 116025 (2022)

    Google Scholar 

  3. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102–016106 (2016)

    Google Scholar 

  4. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, Phase transformations in FeCo - Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron. 32, 16694–16705 (2021)

    Google Scholar 

  5. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Oleinik, E.S. Yakovenko, L.Y. Matsui, Magnetic and absorbing properties of M-type substituted hexaferrites BaFe12-xGaxO19 (0.1 < x < 1.2). J. Exp. Theor. Phys. 123, 461–469 (2016)

    ADS  Google Scholar 

  6. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, N.I. Zabeivorota, L.V. Panina, V. An, V.A. Trukhanov, E.L. Turchenko, V.V. Trukhanova, O.S. Oleynik, LYu. Yakovenko, V.E.Z. Matzui, High-frequency absorption properties of gallium weakly doped barium hexaferrites. Philos. Mag. 99, 585–605 (2019)

    ADS  Google Scholar 

  7. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci. Mater.: Electron. 31, 11729–11740 (2020)

    Google Scholar 

  8. R.I. Shakirzyanov, A.L. Kozlovskiy, M.V. Zdorovets, A.L. Zheludkevich, D.I. Shlimas, N.V. Abmiotka, P.A. Kazantsev, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, Impact of thermobaric conditions on phase content, magnetic and electrical properties of the CoFe2O4 ceramics. J. Alloys Compd. 954, 170083 (2023)

    Google Scholar 

  9. A.L. Kozlovskiy, M.V. Zdorovets, Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J. Mater. Sci. Mater. Electron. 30, 11819–11832 (2019)

    Google Scholar 

  10. T. Zubar, V. Fedosyuk, D. Tishkevich, O. Kanafyev, K. Astapovich, A. Kozlovskiy, M. Zdorovets, D. Vinnik, S. Gudkova, E. Kaniukov, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, S. Trukhanov, A. Trukhanov, The effect of heat treatment on the microstructure and mechanical properties of 2D nanostructured Au/NiFe system. Nanomater. 10, 1077 (2020)

    Google Scholar 

  11. M.A. Darwish, T.I. Zubar, O.D. Kanafyev, D. Zhou, E.L. Trukhanova, S.V. Trukhanov, A.V. Trukhanov, A.M. Henaish, Combined effect of microstructure, surface energy, and adhesion force on the friction of PVA/ferrite spinel nanocomposites. Nanomater. 12, 1998 (2022)

    Google Scholar 

  12. A.M. Henaish, M.A. Darwish, O.M. Hemeda, I.A. Weinstein, T.S. Soliman, A.V. Trukhanov, S.V. Trukhanov, D. Zhou, A.M. Dorgham, Structure and optoelectronic properties of ferroelectric PVA-PZT nanocomposites. Opt. Mater. 138, 113402 (2023)

    Google Scholar 

  13. K. Pal, N. Asthana, A.A. Aljabali, S.K. Bhardwaj, S. Kralj, A. Penkova, T. Sabu, Z. Tean, F. Gomes de Souza, A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: nano-imaging and biosensor applications. Crit. Rev. Solid State Mater. Sci 47(5), 691–707 (2022)

    ADS  Google Scholar 

  14. N. Nath, A. Kumar, S. Chakroborty, S. Soren, A. Barik, K. Pal, F.G. de Souza Jr, Carbon nanostructure embedded novel sensor implementation for detection of aromatic volatile organic compounds: an organized review. ACS Omega 8(5), 4436–4452 (2023)

    Google Scholar 

  15. K. Pal, S. Chakroborty, P. Panda, N. Nath, S. Soren, Environmental assessment of wastewater management via hybrid nanocomposite matrix implications—an organized review. Environ. Sci. Pollut. Res. 29(51), 76626–76643 (2022)

    Google Scholar 

  16. J.G. Vijayan, T. Niranjana Prabhu, A.G. Jineesh, K. Pal, S. Chakroborty, Synthesis of bagasse nanocellulose-filled composite polyurethane xerogel for the efficient adsorption of Rhodamine-B dye from aqueous solution: investigation of adsorption parameters. Eur. Phys. J. E. 46(4), 23 (2023)

    Google Scholar 

  17. S. Bagyalakshmi, A. Sivakami, K. Pal, R. Sarankumar, C. Mahendran, Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. J. Nanopart. Res. 24(10), 201 (2022)

    ADS  Google Scholar 

  18. D. Tripathy, S. Chakroborty, A.S. Gadtya, R.N. Mahaling, S. Moharana, A. Barik, K. Pal, Enhanced dielectric and electrical performance of phosphonic acid-modified tantalum (Ta)-doped potassium sodium niobate (KNaNbO3)-P (VDF-HFP) composites. Eur. Phys. J. E. 46(3), 21 (2023)

    Google Scholar 

  19. K. Pal, A.A. Aljabali, S. Kralj, S. Thomas, F.G. de Souza, Graphene-assembly liquid crystalline and nanopolymer hybridization: a review on switchable device implementations. Chemosphere 263, 128104 (2021)

    ADS  Google Scholar 

  20. X. Chen, H. Li, P. Zhang, G. Li, Microwave dielectric properties of Co2P2O7 ceramics. Ceram. Int. 47(2), 1980–1985 (2021)

    Google Scholar 

  21. W.P. Wang, H. Pang, M.L. Jin, X. Shen, Y. Yao, Y.G. Wang, Y.C. Li, X.D. Li, C.Q. Jin, R.C. Yu, Studies on the structural stability of Co2P2O7 under pressure. J. Phys. Chem. Solids 116, 113–117 (2018)

    ADS  Google Scholar 

  22. Z. Khan, B. Senthilkumar, S. Lim, R. Shanker, Y. Kim, H. Ko, Redox-additive-enhanced high capacitance supercapacitors based on Co2P2O7 nanosheets. Adv. Mater. Interfaces 4(12), 1700059 (2017)

    Google Scholar 

  23. G. Apsana, P.P. George, N. Devanna, Green synthesis and thermo, optical properties of M2P2O7 [M= Ca and Co] nanoparticles. Int. J. Pharma. BioSci 8, 148 (2017)

    Google Scholar 

  24. S. Wang, X. Jiang, G. Du, Z. Guo, J. Jang, S.J. Kim, Solvothermal synthesis of Mn2P2O7 and its application in lithium-ion battery. Mater. Lett. 65(21–22), 3265–3268 (2011)

    Google Scholar 

  25. B. Boonchom, R. Baitahe, Synthesis and characterization of nanocrystalline manganese pyrophosphate Mn2P2O7. Mater. Lett. 63(26), 2218–2220 (2009)

    Google Scholar 

  26. H. Onoda, S. Kanai, Synthesis of novel manganese phosphate violet pigment. Phosphorus Res. Bull. 36, 23–28 (2020)

    Google Scholar 

  27. D.C. Fowlis, C.V. Stager, Magnetic susceptibility of Mn2P2O7. Can. J. Phys. 47(4), 371–373 (1969)

    ADS  Google Scholar 

  28. M. Sutapun, R. Muanghlua, S. Niemcharoen, W.C. Vittayakorn, P. Seeharaj, N. Vittayakorn, Synthesis, characterization and dielectric properties of Mn(2–x)ZnxP2O7 ceramics. Adv. Mater. Res. 802, 12–16 (2013)

    Google Scholar 

  29. J. Bian, D. Kim, K. Hong, Microwave dielectric properties of (Zn1−xMnx)2P2O7. J. Mater. Sci. 40(7), 1801–1803 (2005)

    ADS  Google Scholar 

  30. K. Benkhouja, A. Sadel, M. Zahir, P. Legoll, M. Drillon, Crystallographic and magnetic studies of the mixed pyrophosphates AMnP2O7, A = Co, Ni. Cu. J. Alloys Compd. 188, 230–233 (1992)

    Google Scholar 

  31. H. Dhaouadi, F. Touati, Synthesis and characterization of a series of cobalt–manganese pyrophosphate CoxMn2−xP2O7 (x = 0, 0.25, 0.5, and 1) compounds. Mater. Lett. 82, 91–94 (2012)

    Google Scholar 

  32. J. Rodriguez-Carvajal, FullProf, vol. 1045 (CEA/Saclay, 2001), pp.132–146

    Google Scholar 

  33. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011)

    Google Scholar 

  34. U. Holzwarth, N. Gibson, The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6(9), 534–534 (2011)

    ADS  Google Scholar 

  35. C.R. Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B.S. Benjamin, A.M.E. Raj, K. Jeyadheepan, C. Sanjeeviraja, Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceram. Int. 41(8), 9301–9313 (2015)

    Google Scholar 

  36. S.V. Trukhanov, D.P. Kozlenko, A.V. Trukhanov, High hydrostatic pressure effect on magnetic state of anion-deficient La0.70Sr0.30MnOx perovskite manganites. J. Magn. Magn. Mater. 320, e88–e91 (2008)

    ADS  Google Scholar 

  37. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich, K. Kadyrzhanov, Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 20, 4851 (2020)

    ADS  Google Scholar 

  38. L. Boudad, M. Taibi, W. Belayachi, M. Abd-Lefdil, Investigation of magnetic, dielectric, optical, and electrical properties of Fe half-doped PrCrO3 perovskite. J. Solid State Chem. 309, 122933 (2022)

    Google Scholar 

  39. H. Jebari, N. Tahiri, M. Boujnah, O.E. Bounagui, L. Boudad, M. Taibi, H. Ez-Zahraouy, Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40. Appl. Phys. A 128(9), 842 (2022)

    ADS  Google Scholar 

  40. L. Boudad, M. Taibi, A. Belayachi, M. Abd-lefdil, Structural, morphological, thermal, and oxygen-vacancy-related dielectric relaxation behaviors in EuFeO3 perovskite. Mater. Today Proc. 58, 1028–1032 (2022)

    Google Scholar 

  41. J.H. Edgar, Prospects for device implementation of wide band gap semiconductors. J. Mater. Res. 7(1), 235–252 (1992)

    ADS  Google Scholar 

  42. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan: Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D: Appl. Phys. 44(35), 355402 (2011).

  43. L. Boudad, M. Taibi, W. Belayachi, M. Sajieddine, M. Abd-Lefdil, High temperature dielectric investigation, optical and conduction properties of GdFe0.5Cr0.5O3 perovskite. J. Appl. Phys. 127(17), 174103 (2020)

    ADS  Google Scholar 

  44. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1∕2Nb1∕2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97(8), 084107 (2005)

    ADS  Google Scholar 

  45. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, M. Chaman, A. Azam, A.H. Naqvi, Temperature dependence anomalous dielectric relaxation in Co doped ZnO nanoparticles. Mater. Res. Bull. 47(12), 4161–4168 (2012)

    Google Scholar 

  46. M. Padhy, R.N.P. Choudhary, P. Achary, Dielectric, ferroelectric and impedance study of Bi0.5Ba0.5Gd0.5Ti0.5O3. J. Mater. Sci. Mater. Electron. 32(15), 20625–20639 (2021)

    Google Scholar 

  47. M. Rahaman, T.K. Chaki, D. Khastgir, Control of the temperature coefficient of the DC resistivity in polymer-based composites. J. Mater. Sci. 48(21), 7466–7475 (2013)

    ADS  Google Scholar 

Download references

Funding

The authors declare that no funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AEB: Investigation, writing—original draft, writing—review & editing. LB: investigation, writing—original draft, writing – review & editing. MT: investigation, writing—review & editing, resources. KB: resources. JA: resources.

Corresponding author

Correspondence to Lahcen Boudad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest and that no funding was received for conducting this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Boukili, A., Boudad, L., Taibi, M. et al. Exploring the characteristics of CoMnP2O7 diphosphate: a comprehensive analysis of structure, morphology, optics, dielectrics, and electrical properties. Appl. Phys. A 129, 528 (2023). https://doi.org/10.1007/s00339-023-06818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06818-4

Keywords

Navigation