Skip to main content
Log in

Role of zirconia nanoparticles on microstructure, excess conductivity and pinning mechanism of BSCCO superconductor ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using the solid-state reaction process, we prepared (Bi,Pb)2Sr2Ca2Cu3O10-δ (Bi-2223 for brevity) ceramics with the addition of zirconium dioxide (ZrO2) nanoparticles. The proportion x of ZrO2 per the total masse of superconductor ranged from 0 wt.% to 0.2 wt.%. We report the intragrain critical current density (Jc), pinning mechanisms, and thermal fluctuations induced excess conductivity. Employing numerous characterization techniques, combining X-rays diffraction, electrical transport measurements, scanning and transmission electron microscopes (SEM and TEM), and DC magnetization hysteresis measurements, we find that the ceramic sintered with 0.1 wt.% ZrO2 nanoparticle showed the best superconducting performance. From the analysis of excess conductivity using Aslamazov–Larkin model, we assessed the crossover temperatures between different regimes of conductivity, the penetration depth, the coherence length, as well as the upper and the lower critical magnetic fields (Bc1, Bc2) at zero kelvin for all the ceramics. Critical current density versus temperature deduced from magnetization measurement is raised by NP-ZrO2 addition. Thereby, NP-ZrO2 strengthened the role of δl pinning cores and enhanced the flux pinning ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Yazdani-Asrami, M. Z., W. Yuan, Challenges for developing high temperature superconducting ring magnets for rotating electric machine applications in future electric aircrafts, J. Magn. Magn. 522, 167543 (2021)

  2. L.L. Kaczmarek, R.I. Jsselsteijn, V. Zakosarenko, A. Chwala, H.G. Meyer, M. Meyer, R. Stolz, Advanced HTS DC SQUIDs with step-edge Josephson junctions for geophysical applications. IEEE Trans. Appl. Supercond. 28, 1601805 (2018)

    Google Scholar 

  3. A. Biju, P. Guruswamy, U. Syamaprasad, Influence of Pb on structural and superconducting properties of rare earth modified Bi2Sr2CaCu2Oy. Physica C 466, 23 (2007)

    ADS  Google Scholar 

  4. F. Ben Azzouz, A. M’chirgui, N. Naït Slimen, M. Ben Salem, Effect of substantial addition of PbO on liquid phase conversion during the final processing of (Bi,Pb)-2223 superconductors, Physica C, 416, 115 (2004)

  5. N. A. A. Yahya, R. Abd-Shukor, Effect of nano-sized PbO on the transport critical current density of (Bi1.6Pb0.4Sr2Ca2Cu3O10)/Ag tapes, Ceram. Int. 40, 5197 (2014)

  6. H.F. Arani, S. Baghshahi, A. Sedghi, D. Stornaiuolo, F. Tafuri, D. Massarotti, N.R. Noori, The influence of heat treatment on the microstructure, flux pinning and magnetic properties of bulk BSCCO samples prepared by sol-gel route. Ceram. Int. 44, 5209 (2018)

    Google Scholar 

  7. A. Sedky, A.M. Ali, H.H. Somaily, Effect melting time on the excess conductivity and critical parameters of BSCCO cooper oxide system. J. Supercond. Nov. Magn. 33, 2963 (2020)

    Google Scholar 

  8. L. Pérez-Acosta, E. Govea-Alcaide, J.G. Noudem, I.F. Machado, S.H. Masunaga, R.F. Jardim, Highly dense and textured superconducting (Bi, Pb)2Sr2Ca2Cu3O10-δ ceramics amples processed by spark-plasma texturing. Ceram. Int. 42, 13248 (2016)

    Google Scholar 

  9. M.S. Shalaby, M.H. Hamed, N.M. Yousif, H.M. Hashem, The impact of the addition of Bi2Te3 nanoparticles on the structural and the magnetic properties of the Bi-2223 high-Tc superconductor. Ceram. Int. 47, 25236 (2021)

    Google Scholar 

  10. H. Baqiah, S. A. Halim, M. I. Adam, S. K. Chen, S. S. H. Ravandi, M. A. M. Faisal, M. M. Kamarulzaman, M. Hanif, The effect of magnetic nanoparticle addition on the superconducting properties of Bi1.6Pb0.4Sr2Ca2Cu2Oδ superconductors, J. Solid State Sci. Technol. 17, 81 (2009)

  11. H.F. Arania, S. Baghshahi, A. Sedghi, N.R. Noori, Enhancement in the performance of BSCCO (Bi-2223) superconductor with functionalized TiO2 nanorod additive. Ceram. Int. 45, 21878 (2019)

    Google Scholar 

  12. A. Sedky, A. Salah, Fluctuation, diamagnetic transition, and FTIR spectra of La substituting Ca in (Bi, Pb): 2223 superconductor. J. Supercond. Nov. Magn. 33, 3705 (2020)

    Google Scholar 

  13. A. N. Jannah, H. Abdullah, R. Abd-Shukor, Enhanced transport critical current density in Ag-sheathed (Bi1.6Pb0.4)Sr2Ca2Cu3Oy superconductor tapes with different nano-sized Co3O4 addition, J. Supercond. Nov. Magn. 28, 1471 (2015)

  14. Ö. Bilgili, M. Yurddaskal, Effects of graphene oxide doping on magnetic and structural properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductor, J. Electron. Mater. 50, 4999 (2021)

  15. A. Ghattas, M. Annabi, M. Zouaoui, F. Ben Azzouz, M. Ben Salem, Flux pinning by Al-based nano particles embedded in polycrystalline (Bi, Pb)-2223 superconductors, Physica C, 468, 31 (2008)

  16. W. Abdeen, S. Marahba, R. Awad, A. I. Abou Aly, I. H. Ibrahim, M. Matar, Electrical and mechanical properties of (Bi,Pb)‐2223 substituted by holmium, J. Adv. Ceram. 5, 54 (2016)

  17. N.A. Yahya, A. Al-Sharabi, N.R. MohdSui, W.S. Chiu, R. Abd-Shukor, Enhanced transport critical current density of (Bi, Pb)-2223/Ag superconductor tapes added with nano-sized Bi2O3. Ceram. Int. 42, 18347 (2016)

    Google Scholar 

  18. G. Kırat, O. Kızılaslan, M.A. Aksan, Effect of the Er-substitution on critical current density in glass-ceramic Bi2Sr2Ca2(Cu3-xErx)O10 superconducting system. Ceram. Int. 42, 15072 (2016)

    Google Scholar 

  19. S. Safran, H. Ozturk, F. Bulut, O. Ozturk, The influence of re-pelletization and heat treatment on physical, superconducting, magnetic and micro-mechanical properties of bulk BSCCO samples prepared by ammonium nitrate precipitation method. Ceram. Int. 43, 15586 (2017)

    Google Scholar 

  20. M. Hafiz, R. Abd-Shukor, Transport critical current density of (Bi1.6Pb0.4)Sr2Ca2Cu3O10/Ag superconductor tapes with addition of nanosized CoFe2O4, Appl. Phys. A 120, 1573 (2015)

  21. H. Oztürk, S. Safran, Effects of carbon-encapsulated nano boron addition on superconducting parameters of BSCCO. J. Alloys Compd. 731, 831 (2018)

    Google Scholar 

  22. A. Aftabi, M. Mozaffari, Fluctuation induced conductivity and pseudogap state studies of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor added with ZnO nanoparticles, Sci. Rep. 11, 4341 (2021)

  23. N. Loudhaief, M. Ben Salem, H. Labiadh, M. Zouaoui, Electrical properties and fluctuation induced conductivity studies of Bi-based superconductors added by CuS nanoparticles synthesized through the aqueous route. Mater. Chem. Phys. 242, 122464 (2020)

    Google Scholar 

  24. A. Harabor, P. Rotaru, N. A. Harabor, Effect of Ni substitute in off-stoichiometric Bi(Pb)-Sr-Ca-Cu(Ni)-O superconductor. Excess conductivity, XRD analysis and thermal behaviour, Ceram. Int. 45, 2742 (2019)

  25. R. Awad, H.T. Rahal, A.M. Abdel-Gaber, A.I. Abou-Aly, Excess conductivity and magnetoconductivity analysis of (NiO)x(Bi, Pb)-2223 superconducting phase. J. Supercond. Nov. Magn. 32, 2733 (2019)

    Google Scholar 

  26. K. Habanjar, F. El Haj Hassan, R. Awad, Comparative studies for the physical properties of superconducting (BaSnO3)x(Bi,Pb)-2223 samples determined from excess conductivity and thermoelectric power analysis, Mater. Res. Express 6, 096001 (2019)

  27. M. Roumié, W. Abdeen, R. Awad, M. Korek, I. Hassan, R. Mawassi, Excess conductivity Analysis of Bi1.8Pb0.4Sr2Ca2Cu3O10+δ Added with Nano-ZnO and Nano-Fe2O3, J. Low Temp. Phys. 174, 45 (2014)

  28. N. Loudhaief, M. Ben Salem, M. Zouaoui, Synthesis and characterization of Eu- and La-doped CuS nanoparticles and their effects on the electrical properties of (Bi,Pb)2Sr2Ca2Cu3Od superconductor, J. Mater. Sci.: Mater. Electron. 32, 453 (2021)

  29. R. Sigwadi, M. Dhlamini, T. Mokrani, F. Nemavhola, Preparation of a high surface area zirconium oxide for fuel cell application. Int. J. Mech. Mater. Eng. 14(1), 1 (2019)

    Google Scholar 

  30. Z. Liang, S. Zhou, W. Cai, X. Fu, H. Ning, J. Chen, W. Yuan, Z. Zhu, R. Yao, J. Peng, Zirconium-aluminum-oxide dielectric layer with high dielectric and relatively low leakage prepared by spin-coating and the application in thin-film transistor. Coatings 10(3), 282 (2020)

    Google Scholar 

  31. E. De la Rosa-Cruz, L.A. Diaz-Torres, P. Salas, V.M. Castano, J.M. Hernandez, Evidence of non-radiative energy transfer from the host to the active ions in monoclinic ZrO2: Sm+3. J. Phys. D Appl. Phys. 34, 83 (2001)

    Google Scholar 

  32. N. Tabassum, D. Kumar, D. Verma, R.A. Bohara, M.P. Singh, Zirconium oxide (ZrO2) nanoparticles from antibacterial activity to cytotoxicity: a next-generation of multifunctional nanoparticles. Mater. Today Commun. 26, 102156 (2021)

    Google Scholar 

  33. C. Li, S. Zhang, L. Gao, Q. Hao, L. Bai, P. Zhang, Doping effects of ZrO2 nanoparticles on the superconducting properties of Bi-2212 tapes. J Mater Sci: Mater Electron 26, 3583 (2015)

    Google Scholar 

  34. M. Zouaoui, A. Ghattas, M. Annabi, F.B. Azzouz, M.B. Salem, Effect of nano-size ZrO2 addition on the flux pinning properties of (Bi, Pb)-2223 superconductor. Supercond. Sci. Technol. 21, 125005 (2008)

    ADS  Google Scholar 

  35. M. Zouaoui, L. Bessais, M. Ben Salem, Thermally activated dissipation and pinning mechanisms in a Bi-2223 superconductor with the addition of nanosized ZrO2 particles. Supercond. Sci. Technol. 23, 095013 (2010)

    ADS  Google Scholar 

  36. L.G. Aslamazov, I.A. Larkin, The influence of fluctuation pairing of electrons on the conductivity of normal metal. Phys. Lett. 26, 238 (1968)

    Google Scholar 

  37. W.E. Lawrence, S. Doniach, In: E. Kanda (Ed.), Proceedings of the Twelfth International Conference on Low Temperature Physics (Kyoto, 1970), Keigaku, Tokyo, 1971, p. 361

  38. N.F. Mott, Conduction in non-crystalline materials (Clarendon press, Oxford, 1993)

    Google Scholar 

  39. A.L. Efros, B.I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C 8, L49 (1975)

    ADS  Google Scholar 

  40. A.S. Alexandrov, A.M. Bratkovsky, N.F. Mott, Hall effect and resistivity of high-Tc oxides in the bipolaron model. Phy. Rev. Lett. 72, 1734 (1994)

    ADS  Google Scholar 

  41. A.S. Alexandrov, V.N. Zavaritsky, S. Dzhumanov, Hall effect and resistivity in underdoped cuprates. Phys. Rev. B 69, 052505 (2004)

    ADS  Google Scholar 

  42. A.M. Ali, A. Sedky, H. Algarni, M.A. Sayed, Argon annealing and oxygen purity affect structural and critical parameters of YBCO copper oxide system. J. Low Temp. Phys. 197, 445 (2019)

    ADS  Google Scholar 

  43. M. Tariq, M. Zubair, The Effect of Preparation Temperature on the Superconducting Parameters of Cu1−xTlxBa2Ca2Cu3O10−δ Superconductor, J Supercond. Nov. Magn. 28, 1455 (2015)

  44. J. Roa-Rojas, R.M. Costa, P. Pureur, Pairing transition, coherence transition, and the irreversibility line in granular GdBa2Cu3O7. Phys. Rev. B 61, 12457 (2000)

    ADS  Google Scholar 

  45. A.R. Jurelo, R.M. Costa, P.R. Júnior, F.C. Serbena, Fluctuation conductivity and phase separation in polycrystalline Y1-xCexBa2Cu3O7, superconductors. J. Supercond. Nov. Magn. 23, 247 (2010)

    Google Scholar 

  46. A. Bianconi, A. Valletta, A. Perali, N.L. Saini, Superconductivity of a striped phase at the atomic limit. Physica C 296, 269 (1998)

    ADS  Google Scholar 

  47. A.A. Khurram, M. Mumtaz, N.A. Khan, M.M. Ahadian, A. Iraji-zad, The effect of grain size on the fluctuation-induced conductivity of Cu1-xTlxBa2Ca3Cu4O12 superconductor thin films. Supercond. Sci. Technol. 20, 742 (2007)

    ADS  Google Scholar 

  48. R. Awad, H.T. Rahal, A.M. Abdel-Gaber, A.I. Abou-Aly, Excess Conductivity and Magnetoconductivity Analysis of (NiO)x /(Bi, Pb)-2223 Superconducting Phase. J. Supercond. Nov. Magn. 32, 2733 (2019)

    Google Scholar 

  49. L. Fruchter, I. Sfar, F. Bouquet, Z.Z. Li, H. Raffy, Nonlinear excess conductivity of Bi2Sr2Can−1CunO2n+4+x(n=1,2) thin films. Phys. Rev. B. 69, 144511 (2004)

    ADS  Google Scholar 

  50. J. Plain, T. Puig, F. Sandiumenge, X. Obradors, J. Rabier, Microstructural influence on critical currents and irreversibility line in melt-textured YBa2Cu3O7-x reannealed at high oxygen pressure. Phys. Rev. B: Condens. Matter 65, 104526 (2002)

    ADS  Google Scholar 

  51. M.K. Ben Salem, E. Hannachi, Y. Slimani, A. Hamrita, M. Zouaoui, L. Bessais, M. Ben Salem, F. Ben Azzouz, SiO2 nanoparticles addition effect on microstructure and pinning propertiesinYBa2Cu3Oy, Ceram. Int. 40, 4953 (2014)

  52. A. Sedky, A. Salah, Comparative study of the effects of La-substituted Ca in (Bi, Pb):2212 and (Bi, Pb):2223 superconductors. J. Electron. Mater. 51, 3042 (2022)

    ADS  Google Scholar 

  53. C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250 (1962)

    ADS  MATH  Google Scholar 

  54. H. Fallah-Arani, S. Baghshahi, A. Sedghi, N. Riahi-Noori, Enhancement in the performance of BSCCO (Bi-2223) superconductor with functionalized TiO2 nanorod additive. Ceram. Int. 45, 21878 (2019)

    Google Scholar 

  55. H. Fallah-Arani, S. Baghshahi, A. Sedghi, Impact of functionalized SiC nano-whisker on the flux pinning ability and superconductor features of Bi-2223 ceramics. Ceram. Int. 47, 3706 (2021)

    Google Scholar 

  56. M. Hafiz, R. Abd-Shukor, Effect of Nanosized NiF2 Addition on the Transport Critical Current Density of Ag-Sheathed (Bi1.6Pb0.4)Sr2Ca2Cu3O10 superconductor Tapes, Adv Mater Sci Eng, 7, 1 (2015)

  57. N. A.A.Yahya, A. Al-Sharabi, N. R. Mohd Suib, W.S. Chiu, R. Abd-Shukor, Enhanced transport critical current density of (Bi,Pb)-2223/Ag superconductor tapes added with nano-sized Bi2O3, Ceram. Int. 42, 18347 (2016)

  58. R. Griessen et al., Evidence for mean free path fluctuation induced pinning in YBa2Cu3O7 and YBa2Cu4O8 Films. Phys. Rev. Lett. 72, 1910 (1994)

    ADS  Google Scholar 

  59. H.H. Wen, Z.X. Zhao, Y.G. Xiao, B. Yin, J.W. Li, Evidence for flux pinning induced by spatial fluctuation of transition temperatures in single domain (Y1-xPrx) Ba2Cu3O7 samples. Physica C 251, 371 (1995)

    ADS  Google Scholar 

  60. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Vortices in high-temperature superconductors, Rev. Mod. Phys. 66 (1994) 1125

  61. H.H. Wen, Z.X. Zhao, R.L. Wang, H.C. Li, B. Yin, Evidence for the lattice-mismatch-stress-field induced flux pinning in (Gd1-xYx)Ba2Cu3O7 thin films. Physica C 262, 81 (1996)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the Institute for Research and Medical Consultations (IRMC) and Basic and Applied Scientific Research Center (BASRC) of Imam Abdulrahman Bin Faisal University (Dammam, Saudi Arabia) for providing laboratory facilities.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

MZ: formal analysis. MBS: supervision. YS: validation, formal analysis, writing—review and editing. HSA: formal analysis. FBA: conceptualization, methodology, investigation, writing—original draft, writing—review and editing, supervision.

Corresponding authors

Correspondence to Y. Slimani or F. Ben Azzouz.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouaoui, M., Ben Salem, M., Slimani, Y. et al. Role of zirconia nanoparticles on microstructure, excess conductivity and pinning mechanism of BSCCO superconductor ceramics. Appl. Phys. A 129, 511 (2023). https://doi.org/10.1007/s00339-023-06791-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06791-y

Keywords

Navigation