Skip to main content
Log in

Physical characterization of thermally evaporated Sn–Sb–Se thin films for solar cell applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The substitution of Sb in binary SnSe structure may lead to tailoring the physical properties of both SnSe and SbSe, promising absorber layers for thin film solar cells. The resulting Sn–Sb–Se structure could be an outstanding material for photovoltaic applications. In this study, Sn–Sb–Se thin films were deposited by thermal evaporation, and the effect of annealing on the films' structural, optical, and electrical properties were reported. XRD measurement shows that annealing at 300 °C yields the best crystalline quality, and structural parameters were calculated using XRD data. SEM and AFM measurements indicate deformation in the film surface after annealing at 400 °C. UV–Vis spectroscopy measurement provides a high absorption coefficient which indicates a direct band gap. The band gap and activation energies of the as-grown sample were found as 1.59 eV and 106.1 meV, respectively. The results of SEM, AFM, XRD, Raman, UV–Vis spectroscopy and temperature-dependent photoconductivity measurements were discussed throughout the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. P. Zhao, Z. Lu, J. Fang, S.R. Paramati, K. Jiang, Determinants of renewable and non-renewable energy demand in China. Struct. Chang. Econ. Dyn. 54, 202–209 (2020). https://doi.org/10.1016/j.strueco.2020.05.002

    Article  Google Scholar 

  2. N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. 2006. [Online]. Available: 10.1073pnas.0603395103

  3. M.G. Panthani et al., Synthesis of CuInS2, CuInSe2, and Cu(In xGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics. J. Am. Chem. Soc. (2008). https://doi.org/10.1021/ja805845q

    Article  Google Scholar 

  4. S. Banu, S.J. Ahn, S.K. Ahn, K. Yoon, A. Cho, Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Solar Energy Mater. Solar Cells (2016). https://doi.org/10.1016/j.solmat.2016.02.013

    Article  Google Scholar 

  5. G. Surucu, K. Colakoglu, E. Deligoz, N. Korozlu, Y.O. Ciftci, The electronic and optical properties on the Zn1−X CaXSe mixed alloys. Solid state Commun. 150, 141–1428 (2010). https://doi.org/10.1016/j.ssc.2010.04.026

    Article  Google Scholar 

  6. O. Bayrakli, M. Terlemezoglu, H.H. Güllü, M. Parlak, Investigation of precursor sequence and post-annealing effects on the properties of Cu2SnZnSe4 thin films deposited by the elemental thermal evaporation. Mater. Res. Express (2017). https://doi.org/10.1088/2053-1591/aa852d

    Article  Google Scholar 

  7. H.H. Güllü, Ö. Bayraklı, M. Parlak, Optical and electrical characteristics of thermally evaporated Cu0.5Ag0.5InSe2 thin films. Thin Solid Films (2017). https://doi.org/10.1016/j.tsf.2017.08.024

    Article  Google Scholar 

  8. G. Surucu, K. Colakoglu, E. Deligoz, Y. Ciftci, N. Korozlu, Electronic, elastic and optical properties on the Zn1-xMgxSe mixed alloys. J. Mater. Sci. (2011). https://doi.org/10.1007/s10853-010-4864-y

    Article  Google Scholar 

  9. F. Alharbi, J.D. Bass, A. Salhi, A. Alyamani, H.C. Kim, R.D. Miller, Abundant non-toxic materials for thin film solar cells: alternative to conventional materials. Renew. Energy 36(10), 2753–2758 (2011). https://doi.org/10.1016/j.renene.2011.03.010

    Article  Google Scholar 

  10. N. Khemiri, S. Chamekh, M. Kanzari, Properties of thermally evaporated CZTS thin films and numerical simulation of earth abundant and non toxic CZTS/Zn(S, O) based solar cells. Sol. Energy 207, 496–502 (2020). https://doi.org/10.1016/j.solener.2020.06.114

    Article  ADS  Google Scholar 

  11. K. Yu, E.A. Carter, A strategy to stabilize kesterite CZTS for high-performance solar cells. Chem. Mater. 27(8), 2920–2927 (2015). https://doi.org/10.1021/acs.chemmater.5b00172

    Article  Google Scholar 

  12. R. Nandi et al., Vapor-transport-deposited orthorhombic-SnSe thin films: a potential cost-effective absorber material for solar-cell applications. Solar RRL (2022). https://doi.org/10.1002/solr.202100676

    Article  Google Scholar 

  13. A. Mavlonov et al., A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 201, 227–246 (2020). https://doi.org/10.1016/j.solener.2020.03.009

    Article  ADS  Google Scholar 

  14. D.J. Xue et al., CuSbSe2 as a potential photovoltaic absorber material: studies from theory to experiment. Adv. Energy Mater. (2015). https://doi.org/10.1002/aenm.201501203

    Article  Google Scholar 

  15. R. Indirajith, M. Rajalakshmi, R. Gopalakrishnan, K. Ramamurthi, Effects of annealing on thermally evaporated SnSe thin films. Ferroelectrics 413(1), 108–114 (2011). https://doi.org/10.1080/00150193.2011.551090

    Article  ADS  Google Scholar 

  16. A.P. Torane, C.H. Bhosale, Preparation and characterization of electrodeposited Sb2Se3 thin films from non-aqueous media. J. Phys. Chem. Solids 63, 1849–1855 (2002). https://doi.org/10.1016/S0022-3697(02)00167-1

    Article  ADS  Google Scholar 

  17. D. Colombara, L.M. Peter, K.D. Rogers, J.D. Painter, S. Roncallo, Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb-Cu metal precursors. Thin Solid Films 519(21), 7438–7443 (2011). https://doi.org/10.1016/j.tsf.2011.01.140

    Article  ADS  Google Scholar 

  18. T.M. Razykov, A.X. Shukurov, O.K. Atabayev, K.M. Kuchkarov, B. Ergashev, A.A. Mavlonov, Growth and characterization of Sb2Se3 thin films for solar cells. Sol. Energy 173, 225–228 (2018). https://doi.org/10.1016/j.solener.2018.07.082

    Article  ADS  Google Scholar 

  19. K. Yang, B. Li, G. Zeng, Structural, morphological, compositional, optical and electrical properties of Sb2Se3 thin films deposited by pulsed laser deposition. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106618

    Article  Google Scholar 

  20. C. Chen et al., Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 10(1), 18–30 (2017). https://doi.org/10.1007/s12200-017-0702-z

    Article  Google Scholar 

  21. X. Hu et al., Improving the efficiency of Sb2Se3 thin-film solar cells by post annealing treatment in vacuum condition. Sol. Energy Mater. Sol. Cells 187, 170–175 (2018). https://doi.org/10.1016/j.solmat.2018.08.006

    Article  ADS  Google Scholar 

  22. T.M. Razykov et al., Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells. Sol. Energy 159, 834–840 (2018). https://doi.org/10.1016/j.solener.2017.11.053

    Article  ADS  Google Scholar 

  23. N.D. Boscher, C.J. Carmalt, R.G. Palgrave, I.P. Parkin, Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films 516(15), 4750–4757 (2008). https://doi.org/10.1016/j.tsf.2007.08.100

    Article  ADS  Google Scholar 

  24. D. Shikha, V. Mehta, J. Sharma, R.P. Chauhan, Effect of deposition temperature on structural, optical and electrical properties of nanocrystalline SnSe thin films. J. Mater. Sci.: Mater. Electron. 28(3), 2487–2493 (2017). https://doi.org/10.1007/s10854-016-5822-5

    Article  Google Scholar 

  25. K.S. Urmila, T.A. Namitha, J. Rajani, R.R. Philip, B. Pradeep, Optoelectronic properties and Seebeck coefficient in SnSe thin films. J. Semicond. (2016). https://doi.org/10.1088/1674-4926/37/9/093002

    Article  Google Scholar 

  26. Z. Li et al., Effect of film thickness and evaporation rate on co-evaporated SnSe thin films for photovoltaic applications. RSC Adv 10(28), 16749–16755 (2020). https://doi.org/10.1039/d0ra01749c

    Article  ADS  Google Scholar 

  27. D. Pathinettam Padiyan, A. Marikani, K.R. Murali, Electrical and photoelectrical properties of vacuum deposited SnSe thin films. Cryst. Res. Technol 35 (8), 49–957 (2000). https://doi.org/10.1002/1521-4079(200008)35:83.0.CO;2-R

  28. T. Bektas, M. Terlemezoglu, O. Surucu, M. Isik, M. Parlak, Growth and optical characterization of Sn0.6Sb0.4Se layer single crystals for optoelectronic applications. Mater. Sci. Semicond. Process. (2022). https://doi.org/10.1016/j.mssp.2021.106434

    Article  Google Scholar 

  29. F.H. Aragón et al., Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method. J. Phys. Chem. C 119(16), 8711–8717 (2015). https://doi.org/10.1021/acs.jpcc.5b00761

    Article  Google Scholar 

  30. M. Parlak and C. Erçelebi, The effect of substrate and post-annealing temperature on the structural and optical properties of polycrystalline InSe thin films. Thin Solid Films 322, 334–339 (1998). https://doi.org/10.1016/S0040-6090(97)00929-2

  31. X. Tong, G. You, Y. Ding, H. Xue, Y. Wang, W. Guo, Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium. Mater. Lett. 229, 261–264 (2018). https://doi.org/10.1016/j.matlet.2018.07.037

    Article  Google Scholar 

  32. P.S. Satheesh Kumar, R. Sangeetha, R. Sivakumar, L. Amalraj, “Effects of substrate temperature on structural and optoelectronic properties of SnSe thin films by nebulized spray deposition for solar cell applications. Mater. Today Proc. 37(Part 2), 2763–2769 (2020). https://doi.org/10.1016/j.matpr.2020.08.642

    Article  Google Scholar 

  33. Z.J. Chen, T. Shen, R.K. Nutor, S.D. Yang, H.F. Wu, J.X. Si, Influence of local heterojunction on the thermoelectric properties of Mo-SnSe multilayer films deposited by magnetron sputtering. J Electron Mater 48(2), 1153–1158 (2019). https://doi.org/10.1007/s11664-018-06849-1

    Article  ADS  Google Scholar 

  34. A. Kumar, V. Kumar, A. Romeo, C. Wiemer, G. Mariotto, Raman spectroscopy and in situ XRD probing of the thermal decomposition of Sb2Se3 thin films. J. Phys. Chem. C 125(36), 19858–19865 (2021). https://doi.org/10.1021/acs.jpcc.1c05047

    Article  Google Scholar 

  35. X. Gong et al., Temperature dependence of Raman scattering in single crystal SnSe. Vib Spectrosc. (2020). https://doi.org/10.1016/j.vibspec.2020.103034

    Article  Google Scholar 

  36. J. Ge, Y. Yu, Y. Yan, Earth-abundant orthorhombic BaCu2Sn(SexS1-x)4 (x ≈ 0.83) thin film for solar energy conversion. ACS Energy Lett. 1(3), 583–588 (2016). https://doi.org/10.1021/acsenergylett.6b00324

    Article  Google Scholar 

  37. M. Demir, H.H. Gullu, M. Terlemezoglu, M. Parlak, Fabrication of CdSexTe1-x thin films by sequential growth using double sources. Phys. B Condens. Matter (2021). https://doi.org/10.1016/j.physb.2021.413232

    Article  Google Scholar 

  38. S. Delice et al., Temperature dependence of band gaps in sputtered SnSe thin films. J. Phys. Chem. Solids 131, 22–26 (2019). https://doi.org/10.1016/j.jpcs.2019.03.004

    Article  ADS  Google Scholar 

  39. B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee, J.M. Myoung, Post-annealing of Al-doped ZnO films in hydrogen atmosphere. J. Cryst. Growth 281(2–4), 475–480 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.045

    Article  ADS  Google Scholar 

  40. N. Suri, K.S. Bindra, R. Thangaraj, Electrical conduction and photoconduction in Se80-xTe 20Bix thin films. J. Phys. Condens. Matter 18(39), 9129–9134 (2006). https://doi.org/10.1088/0953-8984/18/39/038

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Turkish Scientific and Research Council (TUBITAK) under Grant no 120F286.

Funding

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu,120F286,Ozge Surucu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozge Surucu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bektas, T., Surucu, O., Terlemezoglu, M. et al. Physical characterization of thermally evaporated Sn–Sb–Se thin films for solar cell applications. Appl. Phys. A 129, 381 (2023). https://doi.org/10.1007/s00339-023-06656-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06656-4

Keywords

Navigation