Skip to main content
Log in

Effect of deposition temperature on structural, optical and electrical properties of nanocrystalline SnSe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnSe thin films have been prepared by chemical bath deposition method at different substrate temperature. The influence of deposition temperature on structural, optical and electrical properties of polycrystalline SnSe films have been investigated using X-ray diffraction, optical absorbance and conductivity measurements. The X-ray diffraction study reveals the orthorhombic structure of the SnSe films oriented along the (111) direction. The structural parameters such as lattice spacing, crystallite size, strain, number of crystallites per unit area and dislocation density have been evaluated. Optical absorbance measurement indicates the existence of direct allowed band gap in the range 1.50–1.91 eV. The dark conductivity (σ d ) and photoconductivity (σ ph ) measurement in the temperature range (278–385 K), indicates that the conduction in these materials is through an activation process having one activation energy. σd and σ ph values decrease with the decrease of crystallite size. The value of photosensitivity, carrier life time and trap depth have also been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Sagadevan, Nanosci. Nanotechnol. 3(3), 62 (2013)

    Google Scholar 

  2. S.M. Ali, J. Muhammad, S.T. Hussain, S.A. Bakar, M. Ashraf, Mater. Sci. Mater. Electron. 24(7), 2432 (2013)

    Article  Google Scholar 

  3. Y. Moon, S. Kim, J. Park, J. Mater. Sci.: Mater. Electron. 17(12), 973 (2006)

    Google Scholar 

  4. S. Logothetidis, NanoScience and Technology (Springer, Berlin, 2012). doi:10.1007/978-3-642-2222-7-6-1

  5. Z.L. Wang, W. Wu, Angew. Chem. Int. Ed. 51, 2 (2012)

    Article  Google Scholar 

  6. D. Sarigiannis, J.D. Peck, G. Kioseoglou, A. Petrou, T.J. Mountziaris, Appl. Phys. Lett. 80, 4024 (2002)

    Article  Google Scholar 

  7. U. Keller, in Nonlinear Optics in Semiconductors, vol. 59, ed. by E. Garmire, A. Kost (Academic Press, 1999), pp. 211–286

  8. Y.C. Zhu, B. Yoshio, Chem. Phys. Let. 377(3–4), 367 (2003)

    Article  Google Scholar 

  9. K. Zhu, D. Wang, J. Liu, Nano Res 2, 1 (2009)

    Article  Google Scholar 

  10. K.J. John, B. Pradeep, E. Mathai, J. Mater. Sci. 29(6), 1581 (1994)

    Article  Google Scholar 

  11. A. Agarwal, M.N. Vashi, D. Lakshminarayana, N.M. Batra, J. Mater. Sci.: Mater. Electron. 11(1), 67 (2000)

    Google Scholar 

  12. I. Lefebvre, M.A. Szymanski, J. Olivier-Fourcade, J.C. Jumas, Phys. Rev. B 58, 1896 (1998)

    Article  Google Scholar 

  13. Z. Zainal, N. Saravanan, K. Anuar, M.Z. Hussein, W.M.M. Yunus, Mater. Sci. Eng., B 107, 181 (2004)

    Article  Google Scholar 

  14. G. Lakshminarayana, I.V. Kityk, T. Nagao, J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5184-z

    Google Scholar 

  15. B. Subramanian, T. Mahalingam, C. Sanjeeviraja, M. Jayachandran, M.J. Chockalingam, Thin Solid Films 357, 119 (1999)

    Article  Google Scholar 

  16. J. Sharma, S.K. Tripathi, Phys. B 406, 972 (2012)

    Google Scholar 

  17. C.K. De, N.K. Mishra, Indian J. Phys. 71, 530 (1997)

    Google Scholar 

  18. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, 1971)

    Google Scholar 

  19. B.N. Srivastava, S. Sing, Indian J. Pure Appl. Phys. 8, 716 (1970)

    Google Scholar 

  20. D. Shikha, R.P. Chauhan, J. Sharma, Optoelectron. Adv. Mat. 6(7–8), 734 (2012)

    Google Scholar 

  21. D. Shikha, R.P. Chauhan, J. Sharma, International Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering, October 5–7, 2012

  22. J. Sharma, G. Singh, A. Thakur, G.S.S. Saini, N. Goyal, S.K. Tripathi, J. Optoelectron. Adv. M. 7(4), 2085 (2005)

    Google Scholar 

  23. C.A.R. Maria Sahayaraj, A. Mohan, V. Arivazhagan, S. Rajesh, Chalcogenide Lett. 11(2), 47 (2014)

    Google Scholar 

  24. J. Sharma, Ph.D. thesis, Centre of Advanced Study in Physics. Panjab University, Chandigarh, 2007

  25. K.A. Padmanabhan, H. Gleiter, Beilstein. J. Nanotechnol. 5, 1603 (2014)

    Google Scholar 

  26. T.J. Rupert, J.R. Trelewicz, C.A. Schuh, J. Mater. Res. 27(9), 1285 (2012)

    Article  Google Scholar 

  27. A. Ganjoo, K. Shimakawa, K. Kitano, E.A. Davis, J. Non-Cryst, Solids 299, 917 (2002)

    Google Scholar 

  28. J. Sharma, D. Shikha, S.K. Tripathi, J. Theor. Appl. Phys. 6(16), 1 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Mehta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikha, D., Mehta, V., Sharma, J. et al. Effect of deposition temperature on structural, optical and electrical properties of nanocrystalline SnSe thin films. J Mater Sci: Mater Electron 28, 2487–2493 (2017). https://doi.org/10.1007/s10854-016-5822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5822-5

Keywords

Navigation