Skip to main content
Log in

Structural, electrical and mechanical properties of the (NdFeO3)x/(CuTl)-1223 superconductor phase

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The impact of adding the orthoferrite NdFeO3, at the nanoscale, on the (Cu0.5Tl0.5)Ba2Ca2Cu3O10–δ phase formation, microstructure, electrical and mechanical performance was studied. The nano-(NdFeO3)x/(CuTl)-1223 composites, with x = 0.00, 0.25, 0.50, 0.75, 1.00, and 2.00 wt.%, were prepared using the solid-state reaction technique. The X-ray diffraction (XRD) confirmed that supplementing the host (CuTl)-1223 phase with nano-NdFeO3 did not alter the unit cell parameters (a and c) and preserved the tetragonal structure. SEM micrographs suggested that the inclusion of nano-NdFeO3 reduced the number of voids and boosted the inter-grain connections. The energy-dispersive X-ray (EDX) spectra revealed the elemental compositions of the various superconductor composites. The superconducting transition temperature (Tc) and the critical current density (Jc) increased with the inclusion of nano-NdFeO3 up to x = 0.50 wt.%. X-ray photoelectron spectroscopy (XPS) spectra analysis revealed the elemental composition and oxidation state of all elements. The Vickers microhardness (Hv) measurements were analyzed and compared with five different theoretical models. According to Hv measurements, the modified proportional sample resistance (MPSR) model provided the best theoretical analysis of Hv within the plateau limit regions. Moreover, various mechanical parameters were estimated as a function of the inclusion of nano-NdFeO3. The indentation creep test showed that the composite samples with high nanoparticle concentration (x > 0.50 wt.%) have dislocation creep mechanism, while those with x ≤ 0.50 wt.% followed a dislocation climbs creep mechanism. A comparison between NdFeO3 nanoparticles and other magnetic ferrites and nano-magnetic oxides was reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, F. Tateai, M. Kawamura, K. Ishida, S. Miyashita, T. Watanabe, Phys. B Phys. Condens. Matter. Part 1, 1085 (2000). https://doi.org/10.1016/S0921-4526(99)02435-7

    Article  ADS  Google Scholar 

  2. H. Ihara, K. Tokiwa, K. Tanaka, T. Tsukamoto, T. Watanabe, H. Yamamoto, A. Iyo, M. Tokumoto, M. Umeda, Physica C 282–287, 957 (1997). https://doi.org/10.1016/S0921-4534(97)00592-3

    Article  ADS  Google Scholar 

  3. Z.Z. Sheng, A.M. Hermann, A. El Ali, C. Almasan, J. Estrada, T. Datta, R.J. Matson, Phys. Rev. Lett. 60, 937 (1988). https://doi.org/10.1103/PhysRevLett.60.937

    Article  ADS  Google Scholar 

  4. M. Mumtaz, L. Ali, M. Waqee-ur-Rehman, K. Nadeem, G. Hussain, G. Abbas, B. Majeed, J. Supercond. Nov. Magn. 30, 2741 (2017). https://doi.org/10.1007/s10948-017-4124-3

    Article  Google Scholar 

  5. K. Nadeem, G. Hussain, M. Mumtaz, A. Haider, S. Ahmed, Ceram. Int. 41, 15041 (2015). https://doi.org/10.1016/j.ceramint.2015.08.049

    Article  Google Scholar 

  6. S. Acharya, A.K. Biswal, J. Ray, P.N. Vishwakarma, J. Appl. Phys. 112, 053916 (2012). https://doi.org/10.1063/1.4751277

    Article  ADS  Google Scholar 

  7. L.N. Bulaevskii, E.M. Chudnovsky, M.P. Maley, Appl. Phys. Lett. 76, 2594 (2000). https://doi.org/10.1063/1.126419

    Article  ADS  Google Scholar 

  8. A. Snezhko, T. Prozorov, R. Prozorov, Phys. Rev. B 71, 024527 (2005). https://doi.org/10.1103/PhysRevB.71.024527

    Article  ADS  Google Scholar 

  9. K. Togano, H. Kumakura, H. Maeda, E. Yanagisawa, K. Takahashi, Appl. Phys. Lett. 53, 1329 (1988). https://doi.org/10.1063/1.100452

    Article  ADS  Google Scholar 

  10. J. Gutiérrez, A. Llordés, J. Gázquez, M. Gibert, N. Romà, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig, X. Obradors, Nat. Mater. 6, 367 (2007). https://doi.org/10.1038/nmat1893

    Article  ADS  Google Scholar 

  11. T.G. Holesinger, L. Civale, B. Maiorov, D.M. Feldmann, J.Y. Coulter, D.J. Miller, V.A. Maroni, Z. Chen, D.C. Larbalestier, R. Feenstra, X. Li, Y. Huang, T. Kodenkandath, W. Zhang, M.W. Rupich, A.P. Malozemoff, Adv. Mater. 20, 391 (2008). https://doi.org/10.1002/adma.200700919

    Article  Google Scholar 

  12. M. Miura, T. Kato, M. Yoshizumi, Y. Yamada, T. Izumi, Y. Shiohara, T. Hirayama, Appl. Phys. Express 1, 051701 (2008). https://doi.org/10.1143/APEX.1.051701

    Article  ADS  Google Scholar 

  13. M. Miura, M. Yoshizumi, T. Izumi, Y. Shiohara, Supercond. Sci. Technol. 23, 014013 (2009). https://doi.org/10.1088/0953-2048/23/1/014013

    Article  ADS  Google Scholar 

  14. S. Engel, T. Thersleff, R. Hühne, L. Schultz, B. Holzapfel, S. Engel, T. Thersleff, L. Schultz, B. Holzapfel, L. Schultz, Appl. Phys. Lett. 90, 102505 (2007). https://doi.org/10.1063/1.2711761

    Article  ADS  Google Scholar 

  15. T. Puig, J. Gutiérrez, A. Pomar, A. Llordés, J. Gázquez, S. Ricart, F. Sandiumenge, X. Obradors, Supercond. Sci. Technol. 21, 034008 (2008). https://doi.org/10.1088/0953-2048/21/3/034008

    Article  ADS  Google Scholar 

  16. N.M. Strickland, N.J. Long, E.F. Talantsev, P. Hoefakker, J. Xia, M.W. Rupich, T. Kodenkandath, W. Zhang, X. Li, Y. Huang, Phys. C 468, 183 (2008). https://doi.org/10.1016/j.physc.2007.11.013

    Article  ADS  Google Scholar 

  17. Y.C. Guo, Y. Tanaka, T. Kuroda, S.X. Dou, Z.Q. Yang, Physica C 311, 65 (1999). https://doi.org/10.1016/S0921-4534(98)00625-X

    Article  ADS  Google Scholar 

  18. E. Guilmeau, B. Andrzejewski, J.G. Noudem, Phys. C 387, 382 (2003). https://doi.org/10.1016/S0921-4534(02)02360-2

    Article  ADS  Google Scholar 

  19. T. Haugan, W. Wong-Ng, L.P. Cook, H.J. Brown, L. Swartzendruber, D.T. Shaw, Phys. C 335, 129 (2000). https://doi.org/10.1016/S0921-4534(00)00157-X

    Article  ADS  Google Scholar 

  20. S. Sengupta, V.R. Todt, P. Kostic, Y.L. Chen, M.T. Lanagan, K.C. Goretta, Phys. C 264, 34 (1996). https://doi.org/10.1016/0921-4534(96)00191-8

    Article  ADS  Google Scholar 

  21. M.M. Elokr, R. Awad, A. Abd El-Ghany, A. Abou Shama, A. Abd El-wanis, J. Supercond. Nov. Magn. 24, 1345 (2011). https://doi.org/10.1007/s10948-010-0831-8

    Article  Google Scholar 

  22. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Alloy. Compd. 486, 733 (2009). https://doi.org/10.1016/j.jallcom.2009.07.034

    Article  Google Scholar 

  23. N.A. Khan, M. Mumtaz, J. Low Temp. Phys. 149, 97 (2007). https://doi.org/10.1007/s10909-007-9495-6

    Article  ADS  Google Scholar 

  24. N.A. Khan, A. Saleem, S.T. Hussain, J. Supercond. Nov. Magn. 25, 1725 (2012). https://doi.org/10.1007/s10948-012-1512-6

    Article  Google Scholar 

  25. A. Srour, R. Awad, W. Malaeb, M.M.E. Barakat, J. Low Temp. Phys. 189, 217 (2017). https://doi.org/10.1007/s10909-017-1806-y

    Article  ADS  Google Scholar 

  26. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Supercond. Nov. Magn. 24, 1463 (2011). https://doi.org/10.1007/s10948-010-0853-2

    Article  Google Scholar 

  27. M. Mumtaz, A.I. Bhatti, K. Nadeem, N.A. Khan, A. Saleem, S.T. Hussain, J. Low Temp. Phys. 170, 185 (2013). https://doi.org/10.1007/s10909-012-0741-1

    Article  ADS  Google Scholar 

  28. M. Imran, Z. Khan, D.M.W. Rehman, A. Ullah, S. Ahmed, K. Nadeem, M. Mumtaz, J. Low Temp. Phys. (2020). https://doi.org/10.1007/s10909-020-02488-1

    Article  Google Scholar 

  29. L. Jia, T. Ding, Q. Li, Y. Tang, Catal. Commun. 8, 963 (2007). https://doi.org/10.1016/j.catcom.2006.08.026

    Article  Google Scholar 

  30. S. Song, L. Xu, Z. He, H. Ying, J. Chen, X. Xiao, B. Yan, J. Hazard. Mater. 152, 1301 (2008). https://doi.org/10.1016/j.jhazmat.2007.08.004

    Article  Google Scholar 

  31. H. Zhang, X. Fu, S. Niu, Q. Xin, J. Alloy. Compd. 459, 103 (2008). https://doi.org/10.1016/j.jallcom.2007.04.259

    Article  Google Scholar 

  32. N. Aparnadevi, K. Saravana Kumar, M. Manikandan, D. Paul Joseph, C. Venkateswaran, J. Appl. Phys. 120, 034101 (2016). https://doi.org/10.1063/1.4954842

    Article  ADS  Google Scholar 

  33. J. Jiang, G. Song, D. Wang, Z. Jin, Z. Tian, X. Lin, J. Han, G. Ma, S. Cao, Z. Cheng, J. Phys. Condens. Matter 28, 116002 (2016). https://doi.org/10.1088/0953-8984/28/11/116002

    Article  ADS  Google Scholar 

  34. M.C. Weber, M. Guennou, H.J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J.A. Moreira, J. Kreisel, Phys. Rev. B 94, 214103 (2016). https://doi.org/10.1103/PhysRevB.94.214103

    Article  ADS  Google Scholar 

  35. S. Hajra, V. Vivekananthan, M. Sahu, G. Khandelwal, N.P.M. Joseph Raj, S.J. Kim, Nano Energy 85, 105964 (2021). https://doi.org/10.1016/j.nanoen.2021.105964

    Article  Google Scholar 

  36. L. Lutterotti, Acta Crystallograph. Sect. A ACTA CRYSTALLOGR A 56, 10 (2000). https://doi.org/10.1107/S0108767300021954

    Article  Google Scholar 

  37. M. Yousefi, S. Zeid, M. Khorasani-Motlagh, Curr. Chem. Lett. 6, 23 (2017). https://doi.org/10.5267/j.ccl.2016.10.002

    Article  Google Scholar 

  38. T.A. Nguyen, V. Pham, T.L. Pham, L.T.T. Nguyen, I.Y. Mittova, V.O. Mittova, L.N. Vo, B.T.T. Nguyen, V.X. Bui, E.L. Viryutina, Curr. Comput.-Aided Drug Des. 10, 219 (2020). https://doi.org/10.3390/cryst10030219

    Article  Google Scholar 

  39. P. Vera Serna, C. García Campos, F. Sánchez De Jesús, A.M. Bolarín Miró, J.A. Juanico Lorán, J. Longwell, Mat. Res. 19, 389 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0214

    Article  Google Scholar 

  40. S. Ahmed, M.Z. Khan, K. Nadeem, H. Abbas, M. Mumtaz, Phys. B Condens. Matter 581, 411954 (2020). https://doi.org/10.1016/j.physb.2019.411954

    Article  Google Scholar 

  41. A. Khalaf, A. Kamar, R. Awad, M. Matar, J Low Temp Phys (2022). https://doi.org/10.1007/s10909-022-02849-y

    Article  Google Scholar 

  42. M. Mumtaz, M. Naveed, B. Amin, M. Imran, M.N. Khan, Ceram. Int. 44, 4351 (2018). https://doi.org/10.1016/j.ceramint.2017.12.029

    Article  Google Scholar 

  43. M. Rekaby, N.H. Mohammed, M. Ahmed, A.I. Abou-Aly, Appl. Phys. A 128, 261 (2022). https://doi.org/10.1007/s00339-022-05394-3

    Article  ADS  Google Scholar 

  44. A. Ghattas, M. Annabi, M. Zouaoui, F.B. Azzouz, M.B. Salem, Phys. C (Amsterdam, Neth.) 468, 31 (2008). https://doi.org/10.1016/j.physc.2007.10.006

    Article  ADS  Google Scholar 

  45. B. Zhao, X. Wan, W. Song, Y. Sun, J. Du, Phys. C 337, 138 (2000). https://doi.org/10.1016/S0921-4534(00)00074-5

    Article  ADS  Google Scholar 

  46. S. Abbas, H. Basma, R. Awad, M. Matar, J Low Temp Phys 208, 271 (2022). https://doi.org/10.1007/s10909-022-02756-2

    Article  ADS  Google Scholar 

  47. H. Basma, S. Abbas, W. Labban, R. Awad, M. Matar, Phys. Scr. 97, 065801 (2022). https://doi.org/10.1088/1402-4896/ac68aa

    Article  ADS  Google Scholar 

  48. A. Kamar, A. Srour, M. Roumié, W. Malaeb, R. Awad, A. Khalaf, Appl. Phys. A 127, 579 (2021). https://doi.org/10.1007/s00339-021-04707-2

    Article  ADS  Google Scholar 

  49. B.A. Albiss, I.M. Obaidat, M. Gharaibeh, H. Ghamlouche, S.M. Obeidat, Solid State Commun. 150, 1542 (2010). https://doi.org/10.1016/j.ssc.2010.06.001

    Article  ADS  Google Scholar 

  50. R. Awad, J. Supercond. Nov. Magn. 21, 461 (2008). https://doi.org/10.1007/s10948-008-0385-1

    Article  Google Scholar 

  51. S.M. Khalil, J. Phys. Chem. Solids 62, 457 (2001). https://doi.org/10.1016/S0022-3697(00)00088-3

    Article  ADS  Google Scholar 

  52. P. Badica, A. Iyo, A. Crisan, Y. Ishiura, A. Sundaresan, H. Ihara, Supercond. Sci. Technol. 15, 964 (2002). https://doi.org/10.1088/0953-2048/15/6/323

    Article  ADS  Google Scholar 

  53. W. Abdeen, S. Marahba, R. Awad, A.I. Abou Aly, I.H. Ibrahim, M. Matar, J. Adv. Ceram. 5, 54 (2016). https://doi.org/10.1007/s40145-015-0173-x

    Article  Google Scholar 

  54. A.E. White, R.C. Dynes, J.P. Garno, Phys. Rev. B 33, 3549 (1986). https://doi.org/10.1103/PhysRevB.33.3549

    Article  ADS  Google Scholar 

  55. H. AbuHlaiwa, H. Basma, M. Rekaby, M. Roumie, R. Awad, J. Low Temp. Phys. 198, 26 (2020). https://doi.org/10.1007/s10909-019-02245-z

    Article  ADS  Google Scholar 

  56. R. Awad, M. Roumié, S. Isber, S. Marhaba, A.I. AbouAly, H. Basma, J. Supercond. Nov. Magn. 28, 535 (2015). https://doi.org/10.1007/s10948-014-2752-4

    Article  Google Scholar 

  57. W. Abdeen, N.H. Mohammed, R. Awad, S.A. Mahmoud, M. Hasebbo, J. Supercond. Nov. Magn. 26, 623 (2013). https://doi.org/10.1007/s10948-012-1803-y

    Article  Google Scholar 

  58. A. Jabbar, I. Qasim, K.M. Khan, Z. Ali, K. Nadeem, M. Mumtaz, J. Alloy. Compd. 618, 110 (2015). https://doi.org/10.1016/j.jallcom.2014.08.162

    Article  Google Scholar 

  59. M.S. Hassan, A. Khalaf, A. Kamar, R. Awad, M. Matar, Appl. Phys. A 128, 1078 (2022). https://doi.org/10.1007/s00339-022-06170-z

    Article  ADS  Google Scholar 

  60. M. Rekaby, M. Matar, J. Mater. Res. (2023). https://doi.org/10.1557/s43578-023-00906-0

    Article  Google Scholar 

  61. Y. Muhammad, M. Mumtaz, L. Ali, M. Ali, M.M. Rahim, N. Hussain, Z. Iqbal, J. Supercond. Nov. Magn. 35, 669 (2022). https://doi.org/10.1007/s10948-021-06122-3

    Article  Google Scholar 

  62. F.I.N. de Vera, B.G. Singidas, R.V. Sarmago, Cryogenics 121, 103406 (2022). https://doi.org/10.1016/j.cryogenics.2021.103406

    Article  Google Scholar 

  63. A. Mourachkine, https://doi.org/10.48550/arXiv.cond-mat/0606187 (2006)

  64. M.M.E. Barakat, J. Supercond. Nov. Magn. 30, 2945 (2017). https://doi.org/10.1007/s10948-016-3791-9

    Article  Google Scholar 

  65. L. Ali, M. Mumtaz, I. Ali, M. Waqee-ur-Rehman, A. Jabbar, J. Supercond. Nov. Magn. 31, 561 (2018). https://doi.org/10.1007/s10948-017-4229-8

    Article  Google Scholar 

  66. M. Sahoo, D. Behera, J. Mater. Sci. Eng. 1, 1 (2012). https://doi.org/10.4172/2169-0022.1000115

    Article  Google Scholar 

  67. N.A. Khan, M. Mumtaz, Phys. Rev. B 77, 054507 (2008). https://doi.org/10.1103/PhysRevB.77.054507

    Article  ADS  Google Scholar 

  68. M. Mumtaz, N.A. Khan, S. Khan, J. Appl. Phys. 107, 103905 (2010). https://doi.org/10.1063/1.3415537

    Article  ADS  Google Scholar 

  69. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Physica C 176, 95 (1991). https://doi.org/10.1016/0921-4534(91)90700-9

    Article  ADS  Google Scholar 

  70. Y. Tanabe, T. Adachi, T. Noji, Y. Koike, J. Phys. Soc. Jpn. 74, 2893 (2005). https://doi.org/10.1143/JPSJ.74.2893

    Article  ADS  Google Scholar 

  71. Y.J. Uemura, Solid State Commun. 120, 347 (2001). https://doi.org/10.1016/S0038-1098(01)00410-0

    Article  ADS  Google Scholar 

  72. T. Matsuzaki, N. Momono, M. Oda, M. Ido, J. Phys. Soc. Jpn. 73, 2232 (2004). https://doi.org/10.1143/JPSJ.73.2232

    Article  ADS  Google Scholar 

  73. Y.J. Uemura, Solid State Commun. 126, 23 (2003). https://doi.org/10.1016/S0038-1098(02)00665-8

    Article  ADS  Google Scholar 

  74. K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, J.C. Davis, Nature 415, 412 (2002). https://doi.org/10.1038/415412a

    Article  ADS  Google Scholar 

  75. S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.W. Ng, E.W. Hudson, K.M. Lang, J.C. Davis, Nature 413, 282 (2001). https://doi.org/10.1038/35095012

    Article  ADS  Google Scholar 

  76. W.M. Chen, X.S. Wu, J.F. Geng, J. Chen, D.B. Chen, X. Jin, S.S. Jiang, J Supercond 10, 41 (1997). https://doi.org/10.1007/BF02763949

    Article  ADS  Google Scholar 

  77. J.L. Tallon, in Frontiers in Superconducting Materials. ed. by A.V. Narlikar (Springer, Berlin, 2005), pp.295–330. https://doi.org/10.1007/3-540-27294-1_7

    Chapter  Google Scholar 

  78. N. El Ghouch, R. Al-Oweini, K. Habanjar, R. Awad, J. Phys. Chem. Solids 151, 109807 (2021). https://doi.org/10.1016/j.jpcs.2020.109807

    Article  Google Scholar 

  79. R.K. Singh, D. Varshney, A.K. Khaskalam, Bull. Mater. Sci. 19, 737 (1996). https://doi.org/10.1007/BF02745194

    Article  Google Scholar 

  80. M.D. Marcos, J.P. Attfield, Phys. C 270, 267 (1996). https://doi.org/10.1016/S0921-4534(96)00518-7

    Article  ADS  Google Scholar 

  81. S.E. Mousavi Ghahfarokhi, M. Zargar Shoushtari, Phys. B Condens. Matter 405, 4643 (2010). https://doi.org/10.1016/j.physb.2010.08.053

    Article  ADS  Google Scholar 

  82. E. Seiler, F. Gömöry, J. Mišík, D. Richter, Phys. C (Amsterdam, Neth.) 551, 66 (2018). https://doi.org/10.1016/j.physc.2018.06.003

    Article  ADS  Google Scholar 

  83. E.S. Nurbaisyatul, H. Azhan, N. Ibrahim, S.F. Saipuddin, Cryogenics 119, 103353 (2021). https://doi.org/10.1016/j.cryogenics.2021.103353

    Article  Google Scholar 

  84. A. Khalid, P. Ahmad, A.I. Alharthi, S. Muhammad, M.U. Khandaker, M.R.I. Faruque, A. Khan, I.U. Din, M.A. Alotaibi, K. Alzimami, A.A. Alfuraih, D.A. Bradley, Materials 14, 3223 (2021). https://doi.org/10.3390/ma14123223

    Article  ADS  Google Scholar 

  85. T. Suzuki, M. Nagoshi, Y. Fukuda, Y. Syono, M. Kikuchi, N. Kobayashi, M. Tachiki, Phys. Rev. B 40, 5184 (1989). https://doi.org/10.1103/PhysRevB.40.5184

    Article  ADS  Google Scholar 

  86. A. Sundaresan, C.S. Gopinath, S. Subramanian, L.C. Gupta, M. Sharon, R. Pinto, R. Vijayaraghavan, Phys. Rev. B 50, 10238 (1994). https://doi.org/10.1103/PhysRevB.50.10238

    Article  ADS  Google Scholar 

  87. K. Tanaka, A. Iyo, N. Terada, K. Tokiwa, S. Miyashita, Y. Tanaka, T. Tsukamoto, S.K. Agarwal, T. Watanabe, H. Ihara, Phys. Rev. B 63, 064508 (2001). https://doi.org/10.1103/PhysRevB.63.064508

    Article  ADS  Google Scholar 

  88. P. Kulkarni, S. Mahamuni, M. Chandrachood, I.S. Mulla, A.P.B. Sinha, A.S. Nigavekar, S.K. Kulkarni, J. Appl. Phys. 67, 3438 (1990). https://doi.org/10.1063/1.345330

    Article  ADS  Google Scholar 

  89. S. Momeni, F. Sedaghati, Microchem. J. 143, 64 (2018). https://doi.org/10.1016/j.microc.2018.07.035

    Article  Google Scholar 

  90. S. Sarkar, P.K. Jana, B.K. Chaudhuri, H. Sakata, Appl. Phys. Lett. 89, 212905 (2006). https://doi.org/10.1063/1.2393001

    Article  ADS  Google Scholar 

  91. J. Quiñonero, F.J. Pastor, J.M. Orts, R. Gómez, A.C.S. Appl, Mater. Interfaces 13, 14150 (2021). https://doi.org/10.1021/acsami.0c21792

    Article  Google Scholar 

  92. M. Saha, S. Mukherjee, P. Bera, Md.M. Seikh, A. Gayen, Ceram. Int. 48, 35732 (2022). https://doi.org/10.1016/j.ceramint.2022.07.058

    Article  Google Scholar 

  93. Ç. Oruç, A. Altındal, Ceram. Int. 43, 10708 (2017). https://doi.org/10.1016/j.ceramint.2017.05.006

    Article  Google Scholar 

  94. Y. Zalaoglu, E. Bekiroglu, M. Dogruer, G. Yildirim, O. Ozturk, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 2339 (2013). https://doi.org/10.1007/s10854-013-1098-1

    Article  Google Scholar 

  95. U. Erdem, Y. Zalaoglu, A.T. Ulgen, T. Turgay, G. Yildirim, Cryogenics 113, 103212 (2021). https://doi.org/10.1016/j.cryogenics.2020.103212

    Article  Google Scholar 

  96. B. Sahoo, D. Behera, J. Mater. Sci. Mater. Electron. 30, 12992 (2019). https://doi.org/10.1007/s10854-019-01661-x

    Article  Google Scholar 

  97. E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Yılmazlar, C. Terzioglu, J. Mater. Sci. Mater. Electron. 23, 1001 (2012). https://doi.org/10.1007/s10854-011-0537-0

    Article  Google Scholar 

  98. H.C. Ling, M.F. Yan, J. Appl. Phys. 64, 1307 (1988). https://doi.org/10.1063/1.341851

    Article  ADS  Google Scholar 

  99. O. Ozturk, E. Asikuzun, A.T. Tasci, T. Gokcen, H. Ada, H. Koralay, S. Cavdar, J. Mater. Sci. Mater. Electron. 29, 3957 (2018). https://doi.org/10.1007/s10854-017-8336-x

    Article  Google Scholar 

  100. R. Terzioglu, S.P. Altintas, A. Varilci, C. Terzioğlu, J. Supercond. Nov. Magn. 32, 3377 (2019). https://doi.org/10.1007/s10948-019-5117-1

    Article  Google Scholar 

  101. N. Gane, F.P. Bowden, J. Appl. Phys. 39, 1432 (1968). https://doi.org/10.1063/1.1656376

    Article  ADS  Google Scholar 

  102. C. Hays, E.G. Kendall, Metallography 6, 275 (1973). https://doi.org/10.1016/0026-0800(73)90053-0

    Article  Google Scholar 

  103. V.R. Howes, J. Phys. E Sci. Instrum. 15, 1308 (1982). https://doi.org/10.1088/0022-3735/15/12/011

    Article  ADS  Google Scholar 

  104. M.M.E. Barakat, A.I. Abou-Aly, R. Awad, N.S. Aly, S. Ibrahim, J. Alloys Compd. 652, 158 (2015). https://doi.org/10.1016/j.jallcom.2015.08.192

    Article  Google Scholar 

  105. H. Li, R.C. Bradt, J. Mater. Sci. 28, 917 (1993). https://doi.org/10.1007/BF00400874

    Article  ADS  Google Scholar 

  106. A. Leenders, M. Mich, H.C. Freyhard, Phys. C 279, 173 (1997). https://doi.org/10.1016/S0921-4534(97)00132-9

    Article  ADS  Google Scholar 

  107. J. Gong, H. Miao, Z. Zhao, Z. Guan, Mater. Sci. Eng. A 303, 179 (2001). https://doi.org/10.1016/S0921-5093(00)01845-1

    Article  Google Scholar 

  108. S. Celik, O. Ozturk, E. Coşkun, M. Sarıhan, E. Asikuzun, K. Ozturk, C. Terzioglu, J. Mater. Sci. Mate.r Electron. 24, 2218 (2013). https://doi.org/10.1007/s10854-013-1082-9

    Article  Google Scholar 

  109. S. Farhat, M. Rekaby, R. Awad, SN Appl. Sci. 1, 546 (2019). https://doi.org/10.1007/s42452-019-0559-4

    Article  Google Scholar 

  110. W. Zewen, J. Wanqi, Mater. Sci. Eng., A 452–453, 508 (2007). https://doi.org/10.1016/j.msea.2006.10.079

    Article  Google Scholar 

  111. P. Feltham, R. Banerjee, J Mater Sci 27, 1626 (1992). https://doi.org/10.1007/BF00542926

    Article  ADS  Google Scholar 

  112. P.M. Sargent, M.F. Ashby, Mater. Sci. Technol. 8, 594 (1992). https://doi.org/10.1179/mst.1992.8.7.594

    Article  ADS  Google Scholar 

  113. M. Kašiarová, B. Shollock, A. Boccaccini, J. Dusza, J. Am. Ceram. Soc. 92, 439 (2009). https://doi.org/10.1111/j.1551-2916.2008.02848.x

    Article  Google Scholar 

  114. I. Qasim, O. Ahmad, M.F. Nasir, M.I. Malik, Q.A. Javed, N.A. Khan, A. Raza, M. Mumtaz, M. Rashid, Mater. Res. Express 6, 046002 (2019). https://doi.org/10.1088/2053-1591/aafc3f

    Article  ADS  Google Scholar 

  115. M. Naveed, M. Mumtaz, R. Khan, A.A. Khan, M.N. Khan, J. Alloy. Compd. 712, 696 (2017). https://doi.org/10.1016/j.jallcom.2017.04.034

    Article  Google Scholar 

  116. N.H. Mohammed, A.I. Abou-Aly, R. Awad, I.H. Ibrahim, M. Roumié, M. Rekaby, J. Low Temp. Phys. 172, 234 (2013). https://doi.org/10.1007/s10909-013-0867-9

    Article  ADS  Google Scholar 

  117. A. Srour, W. Malaeb, M. Rekaby, R. Awad, Phys. Scr. 92, 104002 (2017). https://doi.org/10.1088/1402-4896/aa86ce

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was done in the Faculty of Science, Beirut Arab University, at the Specialized Materials Science Laboratory, Physics Department, and Organic Chemistry Research Laboratory, Chemistry Department in collaboration with the Faculty of Science at Alexandria University in Alexandria, Egypt.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [R. Awad, Marwa H. El Makdah]; Methodology: [Marwa H. El Makdah]; Formal analysis and investigation: [Marwa H. El Makdah, M. Matar, Nour El Ghouch]; Writing—original draft preparation: [Marwa H. El Makdah]; Writing—review and editing: [R. Awad, Mohammad H. El-Dakdouki, M. Matar]; Validation: [R. Awad, Marwa H. El Makdah, M. Matar]; Supervision: [R. Awad, Mohammad H. El-Dakdouki].

Corresponding author

Correspondence to Marwa H. El Makdah.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Makdah, M.H., El Ghouch, N., El-Dakdouki, M.H. et al. Structural, electrical and mechanical properties of the (NdFeO3)x/(CuTl)-1223 superconductor phase. Appl. Phys. A 129, 265 (2023). https://doi.org/10.1007/s00339-023-06547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06547-8

Keywords

Navigation