Skip to main content

Advertisement

Log in

Plastic anisotropy of AA7075-T6 alloy under quasi-static compression: experiments, classical plasticity and artificial neural networks modeling

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents the experimental observations, theoretical analysis and machine learning model of plastic anisotropy of rolling AA7075-T6. Compression responses have been discussed by obtaining the instantaneous stress–strain relationship. The analytical solution of anisotropic initial yielding and hardening has been derived through generalizing the J2 flow theory and applying the evolutive constitutive parameters. In addition, a machine learning model consisting of artificial neural network optimized by genetic algorithm (GA-ANN) is utilized to simulate the plastic anisotropy of AA7075-T6. According to the comparisons among experimental, theoretical and predicted (GA-ANN) results, the machine learning model provides flexible application and is found easy to be generalized for solving such mechanical problems, but with difficultly in assessment of the model’s reliability. Multi-index estimation is a feasible approach to ensure the objective of evaluation in machine learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability statement

Data available on request from the authors.

References

  1. H. Badreddine, K. Saanouni, C. Labergère, J.-L. Duval, Effect of the kinematic hardening on the plastic anisotropy parameters for metallic sheets. Comptes Rendus Mécanique 346, 678–700 (2018)

    Article  ADS  Google Scholar 

  2. M. Fourmeau, T. Børvik, A. Benallal, O.S. Hopperstad, Anisotropic failure modes of high-strength aluminium alloy under various stress states. Int. J. Plast 48, 34–53 (2013)

    Article  Google Scholar 

  3. J. Ha, M. Baral, Y.P. Korkolis, Plastic anisotropy and ductile fracture of bake-hardened AA6013 aluminum sheet. Int. J. Solids Struct. 155, 123–139 (2018)

    Article  Google Scholar 

  4. A. Jenab, I. Sari Sarraf, D.E. Green, T. Rahmaan, M.J. Worswick, The use of genetic algorithm and neural network to predict rate-dependent tensile flow behaviour of AA5182-O sheets. Mater Design 94, 262–273 (2016)

    Article  Google Scholar 

  5. M. Safaei, M.-G. Lee, S.-L. Zang, W. De Waele, An evolutionary anisotropic model for sheet metals based on non-associated flow rule approach. Comput. Mater. Sci. 81, 15–29 (2014)

    Article  Google Scholar 

  6. H. Huh, Y. Lou, G. Bae, C. Lee, F. Barlat, Y.H. Moon, M.G. Lee, Accuracy Analysis of Anisotropic Yield Functions based on the Root-Mean Square Error, (2010) 739–746.

  7. X. Zhou, J. Wang, L. Jing, Coupling effects of strain rate and fatigue damage on wheel-rail rolling contact behaviour: a dynamic finite element simulation. Int. J. Rail Transport. 0(0), 1–22 (2022)

    Article  Google Scholar 

  8. L. Jing, X. Su, F. Yang, H. Ma, L. Zhao, Compressive strain rate dependence and constitutive modeling of closed-cell aluminum foams with various relative densities. J. Mater. Sci. 53, 14739–14757 (2018)

    Article  ADS  Google Scholar 

  9. X. Su, L. Zhou, L. Jing, H. Wang, Experimental investigation and constitutive description of railway wheel/rail steels under medium-strain-rate tensile loading. J. Mater. Eng. Perform. 29, 2015–2025 (2020)

    Article  Google Scholar 

  10. X. Li, R. Xu, X. Zhang, H. Zhang, J. Yang, Inner blast response of fiber reinforced aluminum tubes. Int. J. Impact Eng 172, 104416 (2023)

    Article  Google Scholar 

  11. O. Cazacu, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int. J. Plast 20, 2027–2045 (2004)

    Article  MATH  Google Scholar 

  12. F. Barlat, D.J. Lege, J.C. Brem, A six-component yield function for anisotropic materials. Int. J. Plast 7, 693–712 (1991)

    Article  Google Scholar 

  13. F. Barlat, J.W. Yoon, O. Cazacu, On linear transformations of stress tensors for the description of plastic anisotropy. Int. J. Plast 23, 876–896 (2007)

    Article  MATH  Google Scholar 

  14. O. Cazacu, F. Barlat, Generalization of Drucker’s yield criterion to orthotropy. Math. Mech. Solids 6, 613–630 (2001)

    Article  MATH  Google Scholar 

  15. O. Cazacu, F. Barlat, Application of the theory of representation to describe yielding of anisotropic aluminum alloys. Int. J. Eng. Sci. 41, 1367–1385 (2003)

    Article  Google Scholar 

  16. L. Jing, X. Su, C. Feng, L. Zhou, Strain-rate dependent tensile behavior of railway wheel/rail steels with equivalent fatigue damage: experiment and constitutive modeling. Eng. Fract. Mech. 275, 108839 (2022)

    Article  Google Scholar 

  17. D.W. Abueidda, M. Almasri, R. Ammourah, U. Ravaioli, I.M. Jasiuk, N.A. Sobh, Prediction and optimization of mechanical properties of composites using convolutional neural networks. Compos. Struct. 227, 111264 (2019)

    Article  Google Scholar 

  18. D.W. Abueidda, S. Koric, N.A. Sobh, H. Sehitoglu, Deep learning for plasticity and thermo-viscoplasticity. Int. J. Plast 136, 102852 (2021)

    Article  Google Scholar 

  19. M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. Int. J. Plast 22, 1367–1392 (2006)

    Article  MATH  Google Scholar 

  20. U. Ali, W. Muhammad, A. Brahme, O. Skiba, K. Inal, Application of artificial neural networks in micromechanics for polycrystalline metals. Int. J. Plast 120, 205–219 (2019)

    Article  Google Scholar 

  21. M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D.W. Apley, C. Brinson, W. Chen, W.K. Liu, A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 320, 633–667 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. A.L. Frankel, R.E. Jones, C. Alleman, J.A. Templeton, Predicting the mechanical response of oligocrystals with deep learning. Comput. Mater. Sci. 169, 109099 (2019)

    Article  Google Scholar 

  23. M.B. Gorji, D. Mohr, Towards neural network models for describing the large deformation behavior of sheet metal. IOP Conf. Ser. Mater. Sci. Eng. 651, 012102 (2019)

    Article  Google Scholar 

  24. M.B. Gorji, M. Mozaffar, J.N. Heidenreich, J. Cao, D. Mohr, On the potential of recurrent neural networks for modeling path dependent plasticity. J. Mech. Phys. Solids 143, 103972 (2020)

    Article  MathSciNet  Google Scholar 

  25. X. Liu, C.E. Athanasiou, N.P. Padture, B.W. Sheldon, H. Gao, A machine learning approach to fracture mechanics problems. Acta Mater. 190, 105–112 (2020)

    Article  ADS  Google Scholar 

  26. U. Reuter, A. Sultan, D.S. Reischl, A comparative study of machine learning approaches for modeling concrete failure surfaces. Adv. Eng. Softw. 116, 67–79 (2018)

    Article  Google Scholar 

  27. J. Wen, Q. Zou, Y. Wei, Physics-driven machine learning model on temperature and time-dependent deformation in lithium metal and its finite element implementation. J. Mech. Phys. Solids 153, 104481 (2021)

    Article  Google Scholar 

  28. B. Jordan, M.B. Gorji, D. Mohr, Neural network model describing the temperature- and rate-dependent stress-strain response of polypropylene. Int. J. Plast 135, 102811 (2020)

    Article  Google Scholar 

  29. M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, M.A. Bessa, Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci USA (2019). https://doi.org/10.1073/pnas.1911815116

    Article  Google Scholar 

  30. E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. V.M. Nguyen-Thanh, C. Anitescu, N. Alajlan, T. Rabczuk, X. Zhuang, Parametric deep energy approach for elasticity accounting for strain gradient effects. Comput. Methods Appl. Mech. Eng. 386, 114096 (2021)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoret. Appl. Fract. Mech. 106, 102447 (2020)

    Article  Google Scholar 

  33. T.B. Stoughton, J.W. Yoon, Anisotropic hardening and non-associated flow in proportional loading of sheet metals. Int. J. Plast 25, 1777–1817 (2009)

    Article  MATH  Google Scholar 

  34. H. Wang, M. Wan, X. Wu, Y. Yan, The equivalent plastic strain-dependent Yld 2000–2d yield function and the experimental verification. Comput. Mater. Sci. 47, 12–22 (2009)

    Article  Google Scholar 

  35. Y.S. Lou, H. Huh, J.W. Yoon, Consideration of strength differential effect in sheet metals with symmetric yield function. Int. J. Mech. Sci. 66, 214–213 (2013)

    Article  Google Scholar 

  36. J.W. Yoon, Y. Lou, J. Yoon, M.V. Glazoff, Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int. J. Plast 56, 184–202 (2014)

    Article  Google Scholar 

  37. Q. Hu, X. Li, X. Han, H. Li, J. Chen, A normalized stress invariant-based yield criterion: Modeling and validation. Int. J. Plast 99, 248–273 (2017)

    Article  Google Scholar 

  38. S. Nikbakht, C. Anitescu, T. Rabczuk, Optimizing the neural network hyperparameters utilizing genetic algorithm. J. Zhejiang Univ. Sci. A 22, 407–426 (2021)

    Article  Google Scholar 

  39. K. Srinivasann, A.K. Cherukuri, D.R. Vincent, A.C. Garg, B.-Y. Chen, An efficient implementation of artificial neural networks with K-fold cross-validation for process. J. Internet Technol. 20, 1213–1225 (2019)

    Google Scholar 

  40. H. Li, X. Hu, H. Yang, L. Li, Anisotropic and asymmetrical yielding and its distorted evolution: Modeling and applications. Int. J. Plast 82, 127–158 (2016)

    Article  Google Scholar 

Download references

Funding

The Natural Science Foundation of Zhejiang Province (Grant number LQ23A020007), National Natural Science Foundation of China (Grant number 11802199), and University-enterprise cooperation Project of visiting Engineer of universities (Grant number FG2021035) supported this work by providing the financial contributions.

Author information

Authors and Affiliations

Authors

Contributions

LL: writing—original draft, investigation. WWL: conceptualization, investigation, project administration. HL: investigation, funding acquisition, software. All the authors contributed to the scientific discussion and editing the paper. TJ: conceptualization, funding acquisition, methodology.

Corresponding author

Correspondence to Wei William Lee.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest and that the manuscript has not been published elsewhere, is not under editorial review for publication elsewhere, and is not being submitted simultaneously to another journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Shear test of AA7075-T6 in in-plane direction and validation of constitutive model based on stress integral algorithm

Figure 19 shows the geometric schematic of in-plane shear specimen. The shear stress state can be obtained through stretching short edge of specimen along RD direction. Then, the shear stress can be calculated by dividing the cross-sectional area into force and the shear strain also obtained through DIC method. The complete responses of AA7075-T6 under shear are shown in Fig. 20 and the combined Voce–Hockett–Sherby hardening model was utilized to fit such responses:

$$\sigma_{{{\text{eq}}}} = (1 - \omega )(\sigma_{0} + A_{0} (1 - e^{{ - n_{1} \varepsilon_{{{\text{eq}}}}^{p} }} )) + \omega (\sigma_{d} - (\sigma_{d} - \sigma_{e} )e^{{ - n_{2} \varepsilon_{{{\text{eq}}}}^{p} }} )).$$
(31)

In addition, the hardening parameters are listed in Table 8. Based on Eq. 31, the equivalent stress at four different levels of equivalent strain can be obtained as displayed in Table 9. It should be point out that the fracture failure has occurred when \(\varepsilon_{{{\text{eq}}}}^{p}\) reaches 0.2 and the corresponding \(\sigma_{{{\text{eq}}}}\) is extrapolated through Eq. 31. Then, the plastic work of in-plane shear can be integrated and cubic polynomial was adopted to guarantee the continuous description:

$$W_{{{\text{eq}}}}^{p} = - 1.297 + 272.075\varepsilon_{{{\text{eq}}}}^{p} + 69.939\varepsilon_{{{\text{eq}}}}^{{p^{2} }} - 64.197\varepsilon_{{{\text{eq}}}}^{{p^{3} }}$$
(32)

where \(W_{{{\text{eq}}}}^{p}\) is equivalent plastic work.

Table 8 Parameters of combined Voce–Hockett–Sherby hardening rule
Table 9 Equivalent stress at different levels of equivalent plastic strain
Fig. 19
figure 19

Size of specific shear specimen for describing hardening behaviors

Fig. 20
figure 20

Stress–strain curve of AA7075-T6 under in-plane shear and the fitted combined voce–Hockett–Sherby hardening model

Fig. 21
figure 21

Plastic work–equivalent plastic strain curve and its cubic fit

In order to validate the accuracy of the constitutive model used in this paper, the return mapping algorithm and implicit integration algorithm are applied to carry out stress update at the level of integration point with the assumption of associated flow rule (AFR). Based on above considerations, the integration algorithm can be written as (Fig. 21)

$$\begin{gathered} {{\varvec{\upvarepsilon}}}_{n + 1} = {{\varvec{\upvarepsilon}}}_{n} + \Delta {{\varvec{\upvarepsilon}}} \hfill \\ {{\varvec{\upvarepsilon}}}^{p}_{n + 1} = {{\varvec{\upvarepsilon}}}_{n}^{p} + \Delta \lambda_{n + 1} {\mathbf{g}}_{n + 1} \hfill \\ {\mathbf{q}}_{n + 1} = {\mathbf{q}}_{n} + \Delta \lambda_{n + 1} {\mathbf{h}}_{n + 1} \hfill \\ {{\varvec{\upsigma}}}_{n + 1} = {\mathbf{C}}:({{\varvec{\upvarepsilon}}}_{n + 1} - {{\varvec{\upvarepsilon}}}_{n + 1}^{p} ) \hfill \\ f_{n + 1} = f({{\varvec{\upsigma}}}_{n + 1} ,{\mathbf{q}}_{n + 1} ) = 0, \hfill \\ \end{gathered}$$
(33)

where \(\lambda\), \({\mathbf{g}}\), \({\mathbf{q}}\), \({\mathbf{h}}\), \({\mathbf{C}}\) and n denote the plastic multiplier, flow direction, internal variables, hardening parameters, elastic modulus tensor and time step. Ignoring the subscript n + 1, the following equations can be obtained [40]:

$$\begin{gathered} {\mathbf{a}} = - {{\varvec{\upvarepsilon}}}^{p} + {{\varvec{\upvarepsilon}}}_{n}^{p} + \Delta \lambda {\mathbf{g}} = 0 \hfill \\ {\mathbf{b}} = - {\mathbf{q}} + {\mathbf{q}}_{n} + \Delta \lambda {\mathbf{h}} = 0 \hfill \\ f = f_{Y} ({{\varvec{\upsigma}}},{\mathbf{q}}) = 0. \hfill \\ \end{gathered}$$
(34)

Based on Taylor expansion, the linearized equation system can be obtained (k denotes the iterative step):

$$\begin{gathered} {\mathbf{a}}^{(k)} + {\mathbf{C}}^{{{ - }{1}}} :\Delta {{\varvec{\upsigma}}}^{(k)} + \Delta \lambda^{(k)} ({\mathbf{g}}_{{\upsigma }}^{(k)} :\Delta {{\varvec{\upsigma}}}^{(k)} + {\mathbf{g}}_{{\text{q}}}^{(k)} \cdot \Delta {\mathbf{q}}^{(k)} ) + \delta \lambda^{(k)} {\mathbf{g}}^{(k)} = 0 \hfill \\ {\mathbf{b}}^{(k)} - \Delta {\mathbf{q}}^{(k)} + \Delta \lambda^{(k)} ({\mathbf{h}}_{{\upsigma }}^{(k)} :\Delta {{\varvec{\upsigma}}}^{(k)} + {\mathbf{h}}_{{\text{q}}}^{(k)} \cdot \Delta {\mathbf{q}}^{(k)} ) + \delta \lambda^{(k)} {\mathbf{h}}^{(k)} = 0 \hfill \\ f^{(k)} + f_{{\upsigma }}^{(k)} :\Delta {{\varvec{\upsigma}}}^{(k)} + f_{{\text{q}}}^{(k)} \cdot \Delta {\mathbf{q}}^{(k)} = 0. \hfill \\ \end{gathered}$$
(35)

Therefore, the following equation system can be built:

$$\left[ {\begin{array}{*{20}c} {{\mathbf{C}}^{{ { - }1}} + \Delta \lambda^{(k)} {\mathbf{g}}_{{\upsigma }}^{(k)} } & {\Delta \lambda^{(k)} {\mathbf{g}}_{{\text{q}}}^{(k)} } & {{\mathbf{g}}^{(k)} } \\ {\Delta \lambda^{(k)} {\mathbf{h}}_{{\upsigma }}^{(k)} } & {\Delta \lambda^{(k)} {\mathbf{h}}_{{\text{q}}}^{(k)} - {\mathbf{I}}} & {{\mathbf{h}}^{(k)} } \\ {f_{{\upsigma }}^{(k)} } & {f_{{\text{q}}}^{(k)} } & {\mathbf{o}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\Delta {{\varvec{\upsigma}}}^{(k)} } \\ {\Delta {\mathbf{q}}^{(k)} } \\ {\delta \lambda^{(k)} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - {\mathbf{a}}^{(k)} } \\ { - {\mathbf{b}}^{(k)} } \\ { - f^{(k)} } \\ \end{array} } \right].$$
(36)

Considering the combination of anisotropic hardening and isotropic hardening, the internal variables \({\mathbf{q}}\) only involve hardening parameters:

$${\mathbf{q}} = \left[ {\begin{array}{*{20}c} {a_{1} (\varepsilon_{{{\text{eq}}}}^{p} )} & {a_{2} (\varepsilon_{{{\text{eq}}}}^{p} )} & {a_{3} (\varepsilon_{{{\text{eq}}}}^{p} )} & {a_{4} (\varepsilon_{{{\text{eq}}}}^{p} )} & {a_{5} (\varepsilon_{{{\text{eq}}}}^{p} )} & {a_{6} (\varepsilon_{{{\text{eq}}}}^{p} )} & {\varepsilon_{{{\text{eq}}}}^{p} } \\ \end{array} } \right]^{{\text{T}}} .$$
(37)

Based on AFR, the increase of plastic multiplier equals to the increase of equivalent plastic strain:

$${\text{d}}\lambda = {\text{d}}\varepsilon_{{{\text{eq}}}}^{p} .$$
(38)

Then, the equation system B4 can be rewritten as

$$\left[ {\begin{array}{*{20}c} {{\mathbf{C}}^{{{ - }{1}}} + \Delta \lambda^{(k)} {\mathbf{g}}_{{\upsigma }}^{(k)} } & {\Delta \lambda^{(k)} {\mathbf{g}}_{{\text{q}}}^{(k)} } & {{\mathbf{g}}^{(k)} } \\ {\mathbf{o}} & { - {\mathbf{I}}} & {{\mathbf{h}}^{(k)} } \\ {{\mathbf{f}}_{{\upsigma }}^{(k)} } & {{\mathbf{f}}_{{\text{q}}}^{(k)} } & {f_{{\varepsilon_{eq}^{p} }}^{(k)} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\Delta {{\varvec{\upsigma}}}^{(k)} } \\ {\Delta {\mathbf{q}}^{(k)} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - {\mathbf{a}}^{(k)} } \\ { - {\mathbf{b}}^{(k)} } \\ { - f^{(k)} } \\ \end{array} } \right].$$
(39)

Through solving above equations, the updated stresses satisfy the consistency condition which confirms that the stress loci are located on the yield surface.

It should be point out that the two-dimension stress state is considered, and the isotropic elastic relation can be written as

$$\sigma_{ij} = {\text{C}}_{ijkl} \varepsilon_{kl} ,$$
(40)

where

$$\left\{ \begin{gathered} \sigma_{ij} = \left[ {\begin{array}{*{20}c} {\sigma_{xx} } & {\sigma_{yy} } & {\sigma_{xy} } \\ \end{array} } \right]^{{\text{T}}} \hfill \\ \left[ {\text{C}} \right] = \left[ {\begin{array}{*{20}c} {\frac{E}{{(1 - \upsilon^{2} )}}} & {\frac{E\upsilon }{{(1 - \upsilon^{2} )}}} & 0 \\ {\frac{E\upsilon }{{(1 - \upsilon^{2} )}}} & {\frac{E}{{(1 - \upsilon^{2} )}}} & 0 \\ 0 & 0 & {\frac{E}{1 + \upsilon }} \\ \end{array} } \right] \hfill \\ \varepsilon_{ij} = \left[ {\begin{array}{*{20}c} {\varepsilon_{xx} } & {\varepsilon_{yy} } & {\varepsilon_{xy} } \\ \end{array} } \right]^{{\text{T}}} . \hfill \\ \end{gathered} \right.$$
(40-1)

The flow directions can be expressed as

$$g = \left[ {\frac{1}{{J_{2}^{0} (\sigma_{ij} )}}\left[ {\frac{{a_{1} }}{6}(\sigma_{xx} - \sigma_{yy} ) - \frac{{a_{2} }}{6}( - \sigma_{xx} )} \right]\quad \frac{1}{{J_{2}^{0} (\sigma_{ij} )}}\left[ {\frac{{a_{3} }}{6}\sigma_{yy} - \frac{{a_{1} }}{6}(\sigma_{xx} - \sigma_{yy} )} \right]\quad \frac{{a_{4} }}{{J_{2}^{0} (\sigma_{ij} )}}\sigma_{xy} } \right].$$
(41)

Based on above descriptions, the comparisons between experimental results and constitutive model of compression responses at loading angle of 0° and 90° are presented in Fig. 22. In 0° direction, the predicted values of model agree well with experimental results while that predicted values are slightly higher than experimental results as the loading angle equals to 90°.

Fig. 22
figure 22

Comparisons between experimental results and constitutive model of compression responses at loading angle of 0° and 90°

Appendix 2: Determination of number of neurons and fitness histories with generations of GA

Figures 23, 24, 25, 26, 27 and 28 show the determination of number of neurons of ANN and fitness histories versus generations of GA with different datasets of case 1, case 2 and case 3. The number of neurons can be determined through finding the neurons whose MSE is minimum. Fitness curves that also can be found are convergent to small values with the increasing generation which indicates the reliable optimization of the initial \(\omega_{ij}\), \(\omega_{ki}\), \(b_{i}\),\(b_{k}\) in ANN.

Fig. 23
figure 23

Determination of number of neurons with dataset of case 1

Fig. 24
figure 24

Fitness generations of GA with dataset of case 1

Fig. 25
figure 25

Determination of number of neurons with dataset of case 2

Fig. 26
figure 26

Fitness generations of GA with dataset of case 2

Fig. 27
figure 27

Determination of number of neurons with dataset of case 3

Fig. 28
figure 28

Fitness generations of GA with dataset of case 3

Appendix 3: Performance and training histories of ANN

Figures 29, 30, 31, 32, 33, and 34 show the performance and training histories of ANN with datasets of case 1, case 2 and case 3. For case 1, the R of training set, validation set, test set and total dataset are 0.99991, 0.99985, 0.9998 and 0.99989, respectively. The best validation performance is 4.94e−5 at epoch 277. For case 2, the R of training set, validation set, test set and total dataset are 0.99619, 0.99739, 0.99529 and 0.99621, respectively and the best validation performance 8.396e−4 is found at epoch 39. In addition, the R of training set, validation set, test set and total dataset are 0.99929, 0.99917, 0.99876 and 0.9992, respectively, as the dataset turned into case 3. The corresponding best validation performance is 2.509e−4 at epoch 152.

Fig. 29
figure 29

Performance of trained ANN with dataset of case 1

Fig. 30
figure 30

Training histories of ANN with dataset of case 1

Fig. 31
figure 31

Performance of trained ANN with dataset of case 2

Fig. 32
figure 32

Training histories of ANN with dataset of case 2

Fig. 33
figure 33

Performance of trained ANN with dataset of case 3

Fig. 34
figure 34

Training histories of ANN with dataset of case 3

Appendix 4: Weights and bias of ANN with different datasets of case 1, case 2 and case 3 optimized by GA

Tables 10, 11 and 12 list the optimized initial values of weight and bias of ANN with different dataset of case 1, case 2 and case 3 by GA.

Table 10 Weights and bias of ANN with dataset of case 1
Table 11 Weights and bias of ANN with dataset of case 2
Table 12 Weights and bias of ANN with dataset of case 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, L., Lee, W.W., Lin, H. et al. Plastic anisotropy of AA7075-T6 alloy under quasi-static compression: experiments, classical plasticity and artificial neural networks modeling. Appl. Phys. A 129, 209 (2023). https://doi.org/10.1007/s00339-023-06476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06476-6

Keywords

Navigation