Skip to main content
Log in

A Green’s function-tight-binding-based approach for T-graphene analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The framework of the tight-binding model and Green’s function formalism have been derived to investigate the electronic properties of few-layer T-graphene nanoribbons (TGNRs) with different edges including zigzag, bearded, and armchair TGNR (zTGNR, bTGNR, and aTGNR) and the results are compared with those of monolayers. It was observed that single-layer zTGNRs and bTGNRs with metallic properties retain this characteristic as the number of layers increases. In addition, by virtue of their mirror symmetry, aTGNR monolayers exhibit metallic and semiconducting properties by even and odd widths, respectively. When layers are added, symmetric aTGNRs display metallic behavior, while asymmetric aTGNRs display metallic and semiconducting characteristics, depending on the layer stacking. It is also found that the band structure of symmetric aTGNRs and metallic few-layer asymmetric aTGNRs contain Dirac points which increase with increasing their width and layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    ADS  Google Scholar 

  2. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    ADS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    ADS  Google Scholar 

  5. A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    ADS  Google Scholar 

  6. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Modern Phys. 81(1), 109 (2009)

    ADS  Google Scholar 

  7. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

    ADS  Google Scholar 

  8. Z. Jiang, Y. Zhang, Y.-W. Tan, H. Stormer, P. Kim, Quantum hall effect in graphene. Solid State Commun. 143(1–2), 14–19 (2007)

    ADS  Google Scholar 

  9. H. Mousavi, J. Khodadadi, M. Grabowski, Semiconducting behavior of substitutionally doped bilayer graphene. Physica B: Condens. Matter 530, 90–94 (2018)

    ADS  Google Scholar 

  10. H. Mousavi, Graphene susceptibility in holstein model. J. Magn. Magn. Mater. 323(11), 1537–1540 (2011)

    ADS  Google Scholar 

  11. H. Mousavi, The impact of gas molecule adsorption on the orbital magnetic susceptibility of graphene. J. Magn. Magn. Mater. 322(17), 2533–2536 (2010)

    ADS  Google Scholar 

  12. H. Mousavi, J. Khodadadi, Graphene to graphane: two-band approach. Superlattices Microstruct. 88, 434–441 (2015)

    ADS  Google Scholar 

  13. J. Chen, J. Xi, D. Wang, Z. Shuai, Carrier mobility in graphyne should be even larger than that in graphene: a theoretical prediction. J. Phys. Chem. Lett. 4(9), 1443–1448 (2013)

    Google Scholar 

  14. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Architecture of graphdiyne nanoscale films. Chem. Commun. 46(19), 3256–3258 (2010)

    Google Scholar 

  15. L.-C. Xu, R.-Z. Wang, M.-S. Miao, X.-L. Wei, Y.-P. Chen, H. Yan, W.-M. Lau, L.-M. Liu, Y.-M. Ma, Two dimensional dirac carbon allotropes from graphene. Nanoscale 6(2), 1113–1118 (2014)

    ADS  Google Scholar 

  16. Y. Liu, G. Wang, Q. Huang, L. Guo, X. Chen, Structural and electronic properties of t graphene: a two-dimensional carbon allotrope with tetrarings. Phys. Rev. Lett. 108(22), 225505 (2012)

    ADS  Google Scholar 

  17. D. Bhattacharya, D. Jana, Twin t-graphene: a new semiconducting 2d carbon allotrope. Phys. Chem. Chem. Phys. 22(18), 10286–10294 (2020)

    Google Scholar 

  18. S.S. Sani, H. Mousavi, M. Asshabi, S. Jalilvand, Electronic properties of graphyne and graphdiyne in tight-binding model. ECS J. Solid State Sci. Technol. 9(3), 031003 (2020)

    ADS  Google Scholar 

  19. A.N. Enyashin, A.L. Ivanovskii, Graphene allotropes. Physica Status Solidi (b) 248(8), 1879–1883 (2011)

    ADS  Google Scholar 

  20. B.G. Kim, J.Y. Jo, H. Sim, Comment on “structural and electronic properties of t graphene: a two-dimensional carbon allotrope with tetrarings’’. Phys. Rev. Lett. 110(2), 029601 (2013)

    ADS  Google Scholar 

  21. X. Zhang, L. Jin, X. Dai, G. Chen, G. Liu, A record-high ion storage capacity of t-graphene as two-dimensional anode material for li-ion and na-ion batteries. Appl. Surf. Sci. 527, 146849 (2020)

    Google Scholar 

  22. Q. Gu, D. Xing, J. Sun, Superconducting single-layer t-graphene and novel synthesis routes. Chin. Phys. Lett. 36(9), 097401 (2019)

    ADS  Google Scholar 

  23. S. Ghosal, D. Jana, Beyond t-graphene: two-dimensional tetragonal allotropes and their potential applications. Appl. Phys. Rev. 9(2), 021314 (2022)

    ADS  Google Scholar 

  24. K. Wakabayashi, K.-I. Sasaki, T. Nakanishi, T. Enoki, Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 11(5), 054504 (2010)

    Google Scholar 

  25. H. Mousavi, S. Jalilvand, J.M. Kurdestany, M. Grabowski, Electron doping effects on the electrical conductivity of zigzag carbon nanotubes and corresponding unzipped armchair graphene nanoribbons. Physica E: Low-dimens. Syst. Nanostructures 94, 87–91 (2017)

    ADS  Google Scholar 

  26. X.-Q. Wang, H.-D. Li, J.-T. Wang, Structural stabilities and electronic properties of planar \({{\rm C}} _{4}\) carbon sheet and nanoribbons. Phys. Chem. Chem. Phys. 14(31), 11107–11111 (2012)

    Google Scholar 

  27. C. Dai, X. Yan, Y. Xiao, Y. Guo, Electronic and transport properties of t-graphene nanoribbon: symmetry-dependent multiple dirac points, negative differential resistance and linear current-bias characteristics. EPL (Europhys. Lett.) 107(3), 37004 (2014)

    ADS  Google Scholar 

  28. D. Klein, Graphitic polymer strips with edge states. Chem. Phys. Lett. 217(3), 261–265 (1994)

    ADS  Google Scholar 

  29. Y. Plotnik, M.C. Rechtsman, D. Song, M. Heinrich, J.M. Zeuner, S. Nolte, Y. Lumer, N. Malkova, J. Xu, A. Szameit et al., Observation of unconventional edge states in ‘photonic graphene’. Nat. Mater. 13(1), 57–62 (2014)

    ADS  Google Scholar 

  30. S. Freeney, J. van Den Broeke, A.H. van der Veen, I. Swart, C.M. Smith, Edge-dependent topology in kekulé lattices. Phys. Rev. Lett. 124(23), 236404 (2020)

    ADS  Google Scholar 

  31. J. Kotakoski, A. Krasheninnikov, U. Kaiser, J. Meyer, From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106(10), 105505 (2011)

    ADS  Google Scholar 

  32. J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5(5), 326–329 (2010)

    ADS  Google Scholar 

  33. S. Ghosal, S. Chowdhury, D. Jana, Electronic and thermal transport in novel carbon-based bilayer with tetragonal rings: a combined study using first-principles and machine learning approach. Phys. Chem. Chem. Phys. 23(27), 14608–14616 (2021)

    Google Scholar 

  34. H. Mousavi, S. Jalilvand, S.S. Sani, J.A.L. Hartman, M. Grabowski, Electronic properties of different configurations of double-strand \({{\rm DNA}}\)-like nanowires. Solid State Commun. 319, 113974 (2020)

    Google Scholar 

  35. H. Mousavi, M. Grabowski, Nonlinear electron transport across short \({{\rm DNA}}\) segment between graphene leads. Solid State Commun. 279, 30–33 (2018)

    ADS  Google Scholar 

  36. H. Mousavi, J. Khodadadi, M. Grabowski, Electronic properties of long \({{\rm DNA}}\) nanowires in dry and wet conditions. Solid State Commun. 222, 42–48 (2015)

    ADS  Google Scholar 

  37. S. Jalilvand, H. Mousavi, Multi-band tight-binding model of \({{\rm MoS}} _{2}\) monolayer. J. Electron. Mater. 49(6), 3599–3608 (2020)

    ADS  Google Scholar 

  38. E. Kaxiras, Atomic and Electronic Structure of Solids (Cambridge University Press, Massachusetts, 2003)

    Google Scholar 

  39. G. Grosso, G.P. Parravicini, Solid State Physics (Academic Press, Cambridge, 2013)

    Google Scholar 

  40. S. Jalilvand, R. Sepahvand, H. Mousavi, Electronic behavior of randomly dislocated \({{\rm RNA}}\) and \({{\rm DNA}}\) nanowires: a multi-model approach. Eur. Phys. J. Plus 137(8), 928 (2022)

    Google Scholar 

  41. N. Ashcroft, N. Mermin, Solid State Physics (Harcout College Publishers, USA, 1976)

    MATH  Google Scholar 

  42. W.A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond, Courier Corporation (2012)

  43. Y. Takane, Tunneling density of states in multilayer graphene deposited on a superconductor. J. Phys. Soc. Jpn. 79(12), 124706 (2010)

    ADS  Google Scholar 

  44. H. Mousavi, S. Jalilvand, Electrical and thermal conductivities of few-layer armchair graphene nanoribbons. Eur. Phys. J. B 92(1), 1–11 (2019)

    ADS  Google Scholar 

  45. C. Lu, C.-P. Chang, Y.-C. Huang, R.-B. Chen, M. Lin, Influence of an electric field on the optical properties of few-layer graphene with ab stacking. Phys. Rev. B 73(14), 144427 (2006)

    ADS  Google Scholar 

  46. H. Mousavi, Effects of adsorbed gas on the electrical conductivity of metallic carbon nanotubes. Solid State Commun. 150(15–16), 755–758 (2010)

    ADS  Google Scholar 

  47. H. Mousavi, M. Bagheri, Effects of holstein phonons on the electrical conductivity of carbon nanotubes. Physica E: Low-dimens. Syst. Nanostructures 44(7–8), 1722–1724 (2012)

    ADS  Google Scholar 

  48. H. Mousavi, S. Jalilvand, J.M. Kurdestany, Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride. Physica B: Conden. Matter 502, 132–139 (2016)

    ADS  Google Scholar 

  49. W. Nolting, A. Ramakanth, Quantum Theory of Magnetism (Springer Science & Business Media, Berlin, 2009)

    MATH  Google Scholar 

  50. H. Bruus, K. Flensberg, Many-body Quantum Theory in Condensed Matter Physics: An Introduction (OUP Oxford, Oxford, 2004)

    Google Scholar 

  51. H. Mousavi, S. Jalilvand, F. Mirzaei, Magnetic and thermal characteristics of armchair graphene nanoribbons in the two-band harrison model. J. Magn. Magn. Mater. 469, 405–410 (2019)

    ADS  Google Scholar 

  52. H. Mousavi, Heat capacity of hexagonal boron nitride sheet in holstein model. Semiconductors 48(5), 617–620 (2014)

    ADS  Google Scholar 

  53. H. Mousavi, J. Khodadadi, Electronic heat capacity and thermal conductivity of armchair graphene nanoribbons. Appl. Phys. A 122(1), 1–7 (2016)

    Google Scholar 

  54. A. Bandyopadhyay, A. Nandy, A. Chakrabarti, D. Jana, Optical properties and magnetic flux-induced electronic band tuning of a t-graphene sheet and nanoribbon. Phys. Chem. Chem. Phys. 19(32), 21584–21594 (2017)

    Google Scholar 

  55. Y. Lv, H. Wang, Y. Guo, B. Jiang, Y. Cai, Tetragon-based carbon allotropes t-c8 and its derivatives: a theoretical investigation. Comput. Mater. Sci. 144, 170–175 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Jalilvand.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix: TB Hamiltonian matrix for single-layer of bTGNRs and aTGNRs

Appendix: TB Hamiltonian matrix for single-layer of bTGNRs and aTGNRs

We start by calculating the general form of TB Hamiltonian matrix for bTGNRs monolayer. The lattice structure of bTGNR monolayer is shown in Fig. 1b. According to this figure, the BLUC of this structure includes \(N_{a}=4W_{b}+2\) atoms. Therefore, the TB Hamiltonian of single-layer of bTGNR is generally represented by a \(N_{a}\times N_{a}\) matrix:

$$\begin{aligned} {\varvec{h}}_{pp}({\varvec{k}})=\left( \begin{array}{cccccccccccc} 0 &{} {\varvec{h}}^{\prime }_{1b} &{} 0 &{} 0 &{} \cdots &{} 0 &{} 0 &{} 0 \\ \left( {\varvec{h}}^{\prime }_{1b}\right) ^{\dag } &{} {\varvec{h}}_{0z}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{z} &{} 0 &{} \cdots &{} 0 &{} 0 &{} 0 \\ 0 &{} \left( {\varvec{h}}^{\prime }_{z}\right) ^{\dag } &{} {\varvec{h}}_{0z}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{z} &{} \cdots &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \left( {\varvec{h}}^{\prime }_{z}\right) ^{\dag } &{} {\varvec{h}}_{0z}({\varvec{k}}) &{} \cdots &{} 0 &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} 0 &{} \cdots &{} \left( {\varvec{h}}^{\prime }_{z}\right) ^{\dag } &{} {\varvec{h}}_{0z}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{2b} \\ 0 &{} 0 &{} 0 &{} 0 &{} \cdots &{} 0 &{} \left( {\varvec{h}}^{\prime }_{2b}\right) ^{\dag } &{} 0\\ \end{array} \right) , \end{aligned}$$
(18)

in which the first row and column, as well as the last row and column, are due to the bearded edges. In addition, \({\varvec{h}}_{0z}({\varvec{k}})\) and \({\varvec{h}}^{\prime }_{z}\) have been introduced previously in Eqs. (7) and (8). In addition, the sub-matrices \({\varvec{h}}^{\prime }_{1b}\) and \({\varvec{h}}^{\prime }_{2b}\) are determined by

$$\begin{aligned} {\varvec{h}}^{\prime }_{1b}=\left( \begin{array}{cccccccccccc} t_{2} &{} 0 &{} 0 &{} 0\\ \end{array} \right) , \quad {\varvec{h}}^{\prime }_{2b}=\left( \begin{array}{cccccccccccc} 0 \\ 0 \\ t_{2} \\ 0 \\ \end{array} \right) . \end{aligned}$$
(19)

According to Fig. 1c, the BLUC of aTGNR monolayer with even width contains \(N_{a}=4W_{a}\) atoms, therefore the TB Hamiltonian of this structure can be generally written as follows:

$$\begin{aligned} {\varvec{h}}_{pp}({\varvec{k}})=\left( \begin{array}{cccccccccccc} {\varvec{h}}_{0e}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{e} &{} 0 &{} \cdots &{} 0 &{} 0 \\ \left( {\varvec{h}}^{\prime }_{e}\right) ^{\dag } &{} {\varvec{h}}_{0e}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{e} &{} \cdots &{} 0 &{} 0 \\ 0 &{} \left( {\varvec{h}}^{\prime }_{e}\right) ^{\dag } &{} {\varvec{h}}_{0e}({\varvec{k}}) &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \cdots &{} {\varvec{h}}_{0e}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{e} \\ 0 &{} 0 &{} 0 &{} \cdots &{} \left( {\varvec{h}}^{\prime }_{e}\right) ^{\dag } &{} {\varvec{h}}_{0e}({\varvec{k}}) \\ \end{array} \right) , \end{aligned}$$
(20)

where the sub-matrix \({\varvec{h}}_{0e}({\varvec{k}})\) is a \(8\times 8\) matrix that is given by

$$\begin{aligned} {\varvec{h}}_{0e}({\varvec{k}})=\left( \begin{array}{cccccccccccc} 0 &{} t_{1} &{} 0 &{} t_{1} &{} 0 &{} 0 &{} 0 &{} t_{2} \\ t_{1} &{} 0 &{} t_{1} &{} 0 &{} t_{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} t_{1} &{} 0 &{} t_{1} &{} 0 &{} t_{2} &{} 0 &{} 0 \\ t_{1} &{} 0 &{} t_{1} &{} 0 &{} 0 &{} 0 &{} t_{2} &{} 0 \\ 0 &{} t_{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} g({\varvec{k}})\\ 0 &{} 0 &{} t_{2} &{} 0 &{} 0 &{} 0 &{} g({\varvec{k}}) &{} 0\\ 0 &{} 0 &{} 0 &{} t_{2} &{} 0 &{} g^{*}({\varvec{k}}) &{} 0 &{} 0\\ t_{2} &{} 0 &{} 0 &{} 0 &{} g^{*}({\varvec{k}}) &{} 0 &{} 0 &{} 0\\ \end{array} \right) , \end{aligned}$$
(21)

in which \(g({\varvec{k}})=t_{1}\exp \left( \textrm{i}k_{x}a\right)\) with \(a=2a_{1}+\sqrt{2}a_{2}\). Further, the sub-matrix \({\varvec{h}}^{\prime }_{e}\) is also an 8D matrix, with all elements zero except for \({\varvec{h}}^{\prime }(6,5)=t_{1}\) and \({\varvec{h}}^{\prime }(7,8)=t_{1}\).

As it is observed in Fig. 1d, the BLUC of aTGNR monolayer with odd width includes \(N_{a}=4W_{a}\) atoms. Therefore, the general form of the TB Hamiltonian matrix of this structure for each odd width can be shown as follows:

$$\begin{aligned} {\varvec{h}}_{pp}({\varvec{k}})=\left( \begin{array}{cccccccccccc} {\varvec{h}}_{0o}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{1o} &{} 0 &{} 0 &{} \cdots &{} 0 &{} 0 \\ {\varvec{h}}^{\prime }_{1o} &{} {\varvec{h}}_{0o}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{2o} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} \left( {\varvec{h}}^{\prime }_{2o}\right) ^{\dag } &{} {\varvec{h}}^{\prime }_{0o}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{2o} &{} \cdots &{} 0 &{} 0 \\ 0 &{} 0 &{} \left( {\varvec{h}}^{\prime }_{2o}\right) ^{\dag } &{} {\varvec{h}}_{0o}({\varvec{k}}) &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} 0 &{} \cdots &{} {\varvec{h}}_{0o}({\varvec{k}}) &{} {\varvec{h}}^{\prime }_{2o} \\ 0 &{} 0 &{} 0 &{} 0 &{} \cdots &{} \left( {\varvec{h}}^{\prime }_{2o}\right) ^{\dag } &{} {\varvec{h}}^{\prime }_{0o}({\varvec{k}}) \\ \end{array} \right) , \end{aligned}$$
(22)

in which the sub-matrices \({\varvec{h}}_{0o}({\varvec{k}})\), \({\varvec{h}}^{\prime }_{0o}({\varvec{k}})\), \({\varvec{h}}^{\prime }_{1o}\), and \({\varvec{h}}^{\prime }_{2o}\) are \(4\times 4\) and equal to, respectively:

$$\begin{aligned} {\varvec{h}}_{0o}({\varvec{k}})= & {} \left( \begin{array}{cccccccccccc} 0 &{} t_{1} &{} t_{2} &{} 0 \\ t_{1} &{} 0 &{} 0 &{} t_{2} \\ t_{2} &{} 0 &{} 0 &{} g^{*}({\varvec{k}}) \\ 0 &{} t_{2} &{} g({\varvec{k}}) &{} 0 \\ \end{array} \right) , \nonumber \\ {\varvec{h}}^{\prime }_{0o}({\varvec{k}})= & {} \left( \begin{array}{cccccccccccc} 0 &{} g^{*}({\varvec{k}}) &{} t_{2} &{} 0 \\ g({\varvec{k}}) &{} 0 &{} 0 &{} t_{2} \\ t_{2} &{} 0 &{} 0 &{} t_{1} \\ 0 &{} t_{2} &{} t_{1} &{} 0 \\ \end{array} \right) , \end{aligned}$$
(23)
$$\begin{aligned} {\varvec{h}}^{\prime }_{1o}= & {} \left( \begin{array}{cccccccccccc} t_{1} &{} 0 &{} 0 &{} 0 \\ 0 &{} t_{1} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 \\ \end{array} \right) , \quad {\varvec{h}}^{\prime }_{2o}=\left( \begin{array}{cccccccccccc} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 \\ t_{1} &{} 0 &{} 0 &{} 0 \\ 0 &{} t_{1} &{} 0 &{} 0 \\ \end{array} \right) . \end{aligned}$$
(24)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, H., Jalilvand, S. & Paikar, S. A Green’s function-tight-binding-based approach for T-graphene analysis. Appl. Phys. A 129, 195 (2023). https://doi.org/10.1007/s00339-023-06424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06424-4

Keywords

Navigation