Skip to main content
Log in

Ab initio study of gold-doped zigzag graphene nanoribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electronic transport properties of zigzag graphene nanoribbons (ZGNRs) through covalent functionalization of gold (Au) atoms is investigated by using non-equilibrium Green’s function combined with density functional theory. It is revealed that the electronic properties of Au-doped ZGNRs vary significantly due to spin and its non-inclusion. We find that the DOS profiles of Au-adsorbed ZGNR due to spin reveal very less number of states available for conduction, whereas non-inclusion of spin results in higher DOS across the Fermi level. Edge Au-doped ribbons exhibit stable structure and are energetically more favorable than the center Au-doped ZGNRs. Though the chemical interaction at the ZGNR–Au interface modifies the Fermi level, Au-adsorbed ZGNR reveals semimetallic properties. A prominent qualitative change of the I–V curve from linear to nonlinear is observed as the Au atom shifts from center toward the edges of the ribbon. Number of peaks present near the Fermi level ensures conductance channels available for charge transport in case of Au-center-substituted ZGNR. We predict semimetallic nature of the Au-adsorbed ZGNR with a high DOS peak distributed over a narrow energy region at the Fermi level and fewer conductance channels. Our calculations for the magnetic properties predict that Au functionalization leads to semiconducting nature with different band gaps for spin up and spin down. The outcomes are compared with the experimental and theoretical results available for other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.T. Pantelides, Y. Puzyrev, L. Tsetseris, B. Wang, MRS Bull. 37, 12 (2012)

    Article  Google Scholar 

  2. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 11 (2012)

    Article  Google Scholar 

  3. J.S. Qi, J.Y. Huang, J. Feng, D.N. Shi, J. Li, ACS Nano 5(5), 3475 (2011)

    Article  Google Scholar 

  4. H. Terrones, R. Lv, M. Terrones, M.S. Dresselhaus, Rep. Prog. Phys. 75(6), 062501 (2012)

    Article  ADS  Google Scholar 

  5. J. Lan, X.H. Zheng, L.L. Song, R.N. Wang, Z. Zhang, Solid State Commn. 152, 1635 (2012)

    Article  ADS  Google Scholar 

  6. Y. Gan, L. Sun, F. Banhart, Small 4, 5 (2008)

    Article  Google Scholar 

  7. D. Ma, Z. Li, Z. Yang, Carbon 50, 1 (2012)

    Article  Google Scholar 

  8. W. Zhang, L. Sun, Z. Xu, A.V. Krasheninnikov, P. Huai, Z. Zhu, F. Banhart, Phys. Rev. B 81(12), 125425 (2010)

    Article  ADS  Google Scholar 

  9. K. Nakada, A. Ishii, N. Yamamoto, J. Kor, Phys. Soc. 63, 3 (2013)

    Google Scholar 

  10. S.-C. Zhu, K.L. Yao, G.Y. Gao, Y. Ni, Solid State Commun. 155, 40 (2013)

    Article  ADS  Google Scholar 

  11. T. Chen, X.F. Li, L.L. Wang, Q. Li, K.W. Luo, X.H. Zhang, L. Xu, J. Appl. Phys. 115, 053707 (2014)

    Article  ADS  Google Scholar 

  12. L.S. Wang, Phys. Chem. Chem. Phys. 12, 31 (2010)

    MATH  Google Scholar 

  13. Y. Wu, W. Jiang, Y. Ren, W. Cai, W.H. Lee, H. Li, R.D. Piner, C.W. Pope, Y. Hao, R.S. Ruoff, Small 8, 20 (2012)

    Google Scholar 

  14. Y.-C. Zhou, H.L. Zhang, W.Q. Deng, Nanotech 24, 225705 (2013)

    Article  ADS  Google Scholar 

  15. Atomistix ToolKit, A. S QuantumWise, www. quantumwise. com

  16. S.M.M. Dubois, Z. Zanolli, X. Declerck, J.C. Charliera, Eur. Phys. J. B 72, 1 (2009)

    Article  ADS  Google Scholar 

  17. X. Peng-Yang, Z. Gui-Lin, L. Yong-An, W. Jian-Guo, L. Xiao-Nian, J. Acta. Phys. Chim. Sin 28, 02 (2012)

    Google Scholar 

  18. K.T. Chan, J.B. Neaton, M.L. Cohen, Phys. Rev. B 77, 235430 (2008)

    Article  ADS  Google Scholar 

  19. Principles of Semiconductor Devices, Bart Van Zeghbroeck. (2007)

  20. N.K. Jaiswal, P. Srivastava, Solid State Commun. 152, 15 (2012)

    Article  Google Scholar 

  21. N.K. Jaiswal, P. Srivastava, J. Comp. Theor. Nanosci. 10, 6 (2013)

    Article  Google Scholar 

  22. R.S. Sundaram, M. Steiner, H.-Y. Chiu, M. Engel, A.H.A. Bol, R. Krupke, M. Burghard, K. Kern, P. Avouris. Nano. Lett. 11 (2011)

  23. Z. Li, H. Qian, J. Wu, B.L. Gu, W. Duan, Phys. Rev. Letts. 100(20), 206802 (2008)

    Article  ADS  Google Scholar 

  24. X. Hu, W. Zhang, L. Sun, A.V. Krasheninnikov, Phys. Rev. B. 86(19), 195418 (2012)

    Article  ADS  Google Scholar 

  25. Z. Wang, J. Xiao, M. Li, Appl. Phys. A 110, 1 (2013)

    ADS  MathSciNet  Google Scholar 

  26. N.K. Jaiswal, P. Srivastava, J Comp. Theor Nanosci. 9(4) (2012)

  27. A.V. Krasheninnikov et al., Phys. Rev. Lett. 102(12), 126807 (2009)

    Article  ADS  Google Scholar 

  28. G. Yu et al., J. Phys. D Appl. Phys. 46(37), 375303 (2013)

    Article  ADS  Google Scholar 

  29. R. Varns, P. Strange, J. Phys.: Condens. Matter 20(22), 225005 (2008)

    ADS  Google Scholar 

  30. W.H. Brito, R.H. Miwa, Phys. Rev. B 82(4), 045417 (2010)

    Article  ADS  Google Scholar 

  31. R.S. Sundaram, M. Steiner, H.Y. Chiu, M. Engel, A.A. Bol, R. Krupke, M. Burghard, K. Kern, P. Avouris, Nano Lett. 11(9), 3833 (2011)

    Article  ADS  Google Scholar 

  32. J.M. Xu, X.H. Hu, J. Sun, K.B. Yin, S.Y. Lei, L.T. Sun, Proceedings of 8th International Vacuum Electron Sources Conference and NANO carbon, (2010)

  33. H. Peter Koch, R. Laskowski, P. Blaha, K. Schwarz, Phys. Rev. B 84, 245410 (2011)

    Article  ADS  Google Scholar 

  34. C. Cao, M. Wu, J. Jiang, H.P. Cheng, Phys. Rev. B 81, 205424 (2010)

    Article  ADS  Google Scholar 

  35. S. Gupta, G. Kaur, K. Dharamvir, AIP Conf. Proc. 1447, 1 (2012)

    Google Scholar 

  36. E.J.G. Santos, A. Ayuela, D. Sánchez-Portal, New J. Phys. 12, 053012 (2010)

    Article  ADS  Google Scholar 

  37. M. Wei, L. Chen, N. Lun, Y. Sun, D. Li, H. Pan, Solid State Commn. 151, 20 (2011)

    Google Scholar 

  38. H. Wang, K. Li, Y. Cheng, Q. Wang, Y. Yao, U. Schwingenschlögl, W. Yang, Nanoscale 4, 9 (2012)

    Google Scholar 

  39. N.K. Jaiswal, P. Srivastava, IEEE Trans. Nanotech. 12, 5 (2013)

    Article  Google Scholar 

  40. A. Ishii, M. Yamamoto, H. Asano, K. Fujiwara, J. Phys. Conf. Series 100(5), 052087 (2008)

    Article  ADS  Google Scholar 

  41. K. Nakada, A. Ishii, Graphene Simulation, open access book edited by Jian Ru Gong, ISBN, 978–953 (2011)

  42. H. Wang, K. Li, Y. Cheng, Q.X. Wang, Y. Yao, U. Schwingenschlögl, X. Zhang, W. Yang, Nanoscale 4(9), 2920 (2012)

    Article  ADS  Google Scholar 

  43. T.P. Hardcastle et al., Phys. Rev. B 87(19), 195430 (2013)

    Article  ADS  Google Scholar 

  44. A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, P. Pyykkö, R.M. Nieminen, Phys. Rev. Letts. 102(12), 126807 (2009)

    Article  ADS  Google Scholar 

  45. T.H. Seo, S.J. Chae, B.K. Kim, G. Shin, Y.H. Lee, E.K. Suh, App Phys Exp 5(11), 5101 (2012)

    Google Scholar 

  46. Semiconductor Today, Compounds &Advanced Silicon, 7,10,2012/2013

  47. Morán-López, (Ed.). Physics of low dimensional systems (Vol. 7). Springer. (2001)

  48. H. Mehrez, A. Wlasenko, B. Larade, J. Taylor, P. Grütter, H. Guo, Phys. Rev. B 65, 195419 (2002)

    Article  ADS  Google Scholar 

  49. S.-L. Yan, M.-Q. Long, X.-J. Zhang, Xu Hui, Phys. Lett. A 378(13), 960 (2014)

    Article  ADS  MATH  Google Scholar 

  50. T.P. Hardcastle, C.R. Seabourne, R. Zan, R.M.D. Brydson, U. Bangert, Q.M. Ramasse, K. Novoselov, A.J. Scott, Phys. Rev. B Conden. Matt. Mater. Phys. 87(19), 195430 (2013)

    Article  ADS  Google Scholar 

  51. Y.Q. Wang, Y.E. Xie, Z.L. Zhang, Y. Zhang, Y.P. Chen, Eur. Phys. J. B 86, 34 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Council of Scientific Research (CSIR), New Delhi for the financial assistance (Project No. 03(1202)/12/EMR-II) and the Computational Nanoscience and Technology Laboratory (CNTL), ABV-Indian Institute of Information Technology and Management, Gwalior for the computational and infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Dhar, S. & Jaiswal, N.K. Ab initio study of gold-doped zigzag graphene nanoribbons. Appl. Phys. A 117, 1997–2008 (2014). https://doi.org/10.1007/s00339-014-8608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8608-8

Keywords

Navigation