Skip to main content
Log in

Structural, electrical and magnetic properties of (Cu/Co)Fe2O4 spinel ferrite materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research work, we report synthesis, structural and other physical properties of Co1 − xCuxFe2O4 [x = 0.00, 0.25, 0.5, 0.75, 1.00] spinel ferrites. These materials were synthesized using double calcination solid-state method. To confirm the crystal structure acquired by the samples, we carried out X-ray diffraction characterization and the diffraction data was Rietveld refined. The crystallization of all the samples into cubic (Fd-3 m) phase was ascertained from refinement and the structural parameters obtained there. We examined these spinel ferrite samples for room temperature magnetic properties and from the analysis of magnetic data (M–H Curve), these samples were found to exhibit super-paramagnetic behaviour. The Mossbauer spectral analysis confirms the super-paramagnetic nature and the six-line magnetic pattern arising from the super-exchange interaction among the magnetic ions at tetrahedral and octahedral sites have been witnessed. In addition, the room-temperature frequency-dependent dielectric properties were investigated and the data analysis revealed that these materials exhibit better dielectric properties where dielectric constant is high and dielectric loss values are relatively low. Impedance data study reveals that the samples under observation exhibit deviation from the ideal Debye behaviour and inherit a distribution of time constants. All the characterizations reported here were performed at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A.G. Soler, E.C.D. Lima, S.W. da Silva et al., Langmuir 23, 9611 (2007)

    Google Scholar 

  2. E. Manova, B. Kunev, D. Paneva et al., Chem. Mater. 16, 5689 (2004)

    Google Scholar 

  3. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, RSC Adv 5, 2338–2345 (2015)

    ADS  Google Scholar 

  4. N. Masungaa, O.K. Mmelesia, K.K. Kefenia, B.B. Mamba, J. Environ. Chem. Eng. 79, 103179 (2019)

    Google Scholar 

  5. S. Ayyappan, J. Philip, B. Raj, J. Phys. Chem. C. 113, 590–659 (2009)

    Google Scholar 

  6. D.R. Patil, B.K. Chougule, Mat. Chem. and Phy. 117, 35 (2009)

    Google Scholar 

  7. K. Sangsuriyonk, N. Paradee, K. Rotjanasuworapong, A. Sirivat, Sci. Rep. 12, 4611 (2022)

    ADS  Google Scholar 

  8. M. Darvish, N. Nasrabadi, F. Fotovat, S. Khosravi, M. Khatami, S. Jamali, E. Mousavi, S. Iravani, A. Rahdar, Sci. Rep. 12, 9442 (2022)

    ADS  Google Scholar 

  9. S.A. Faghidian, Eur. Phys. J. Plus 136, 559 (2021)

    Google Scholar 

  10. X. Tan, G. Li, Y. Zhao, C. Hu, Mater. Res. Bull. 44, 2160 (2009)

    Google Scholar 

  11. M.A. Gabal, Y.M. Al-Angari, Mat. Chem. Phys. 115, 578 (2009)

    Google Scholar 

  12. T.F. Marinca, I. Chicinas, O. Isnard, Ceram. Int. 38, 1951 (2012)

    Google Scholar 

  13. A. Rais, K. Taibi, A. Addou, A. Zanoun, Y. Al-Douri, Ceram. Int. 40, 14413 (2014)

    Google Scholar 

  14. H.M. Zaki, S.H. Al-Heniti, T.A. Elmosalami, J. Alloys Compd. 633, 104 (2015)

    Google Scholar 

  15. J. Balavijayalakshmi, N. Suriyanarayanan, J. Rayaprakash, J. Magn. Magn. Mater. 385, 302 (2015)

    ADS  Google Scholar 

  16. K. Haneda, A.H. Morrish, J. Appl. Phys. 63(8), 4258 (1988)

    ADS  Google Scholar 

  17. S. Ali Faghidian, J. Comput. Design Eng. 8(3), 949–959 (2021)

    Google Scholar 

  18. N. Moumen, P. Veillet, M.P. Pileni, J. Magn. Magn. Mater. 149, 67 (1995)

    ADS  Google Scholar 

  19. V. Blaskov, V. Petkov, V. Rusanov, L.M. Martinez, B. Martinez, J.S. Munoz, M. Mikhov, J. Magn. Magn. Mater. 162, 331 (1996)

    ADS  Google Scholar 

  20. V. Pillai, D.O. Shah, J. Magn. Magn. Mater. 163, 243 (1996)

    ADS  Google Scholar 

  21. K.J. Davis, S. Wells, S.V. Upadhyay, S.W. Charles, K.M. O’Grady, M. El Hilo, T. Meaz, S. Morup, J. Magn. Magn. Mater. 149, 14 (1995)

    ADS  Google Scholar 

  22. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    ADS  Google Scholar 

  23. T.R. Simbolon, P. Sinuhaji, M. Hamid, T. Sembiring, M. Rianna, M. Ginting, Case Stud. Thermal Eng. (2021). https://doi.org/10.1016/j.csite.2021.101040

    Article  Google Scholar 

  24. P.A. Vinosha, A. Manikandan, A.C. Preetha, A. Dinesh, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, J. Supercond. Novel Magnet. 34, 995–1018 (2021)

    Google Scholar 

  25. S.A. Faghidian, K. KamilŻur, J.N. Reddy, Int. J. Eng. Sci. 170, 103603 (2022)

    Google Scholar 

  26. V. Berbenni, A. Marini, C. Milanese et al., J. Therm. Anal. Calorim. 99, 437–442 (2010)

    Google Scholar 

  27. P.C.R. Verma, R.S. Manna, D. Benerjee, M.R. Verma, K.G. Suresh, A.K. Nigam, J. Alloys. Comp. 435, 298–303 (2008)

    Google Scholar 

  28. A.B. Rajput, S. Hazra, N.N. Gosh, J. Exp. Nanosci. 8, 629–639 (2013)

    Google Scholar 

  29. A.M. Balagurov, I.A. Bobrikov, M.S. Maschenko et al., Crystallogr. Rep. 58, 710–717 (2013)

    ADS  Google Scholar 

  30. K. Rubenbaueur, T. Birchall, Hyperfine Interact 7, 125 (1979)

    ADS  Google Scholar 

  31. D. Dobson, J. Linnett, A. Rahman, J. Phys. Chem. Solids 31, 2727 (1970)

    ADS  Google Scholar 

  32. Y. Slimani, H. Gungunes, M. Nawaz, A. Manikandan, H.S. ElSayed, M.A. Almessiere, H. Sozeri, S.E. Shirsath, I. Ercan, A. Baykal, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.05.028

    Article  Google Scholar 

  33. H.N. Ok, K.S. Baek, H.S. Lee, C.S. Kim, Phys. Rev. B 41, 62 (1990)

    ADS  Google Scholar 

  34. K.P. Thummer, M.C. Chhantbar, K.B. Modi, G.J. Baldha, H.H. Joshi, J. Magn. Magn. Mater. 280, 23 (2004)

    ADS  Google Scholar 

  35. S. Ali Faghidian, Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6885

    Article  Google Scholar 

  36. R.S. Yadav, J. Havlica, J. Masilko, J. Supercond. Nov. Magn. 29, 759 (2016)

    Google Scholar 

  37. L. Wang, H. Dong, J. Li, J. Hua, S. Xu, M. Feng, H. Li, Ceram. Int. 40, 10323 (2014)

    Google Scholar 

  38. M. Rajendran et al., J. Magn. Magn. Mater. 232, 71–83 (2001)

    ADS  Google Scholar 

  39. M. Amir, H. Gungunes, Y. Slimani,·et al. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4733-5

  40. K. Ali et al., J. Magn. Magn Mater. 434, 30–36 (2017)

    ADS  Google Scholar 

  41. J.C. Maxwell, A Treatise of Electricity and Magnetism (Clarendon Press, Oxford, 1873), pp. 1831–1879

    Google Scholar 

  42. K.W. Wagner, Ann. Phys (Leipz.) 40, 817 (1913)

    ADS  Google Scholar 

  43. A.M. Ebo El Ata et al., J. Magn. Magn Mater. 33, 297 (2006)

    Google Scholar 

  44. Z. Lu et al., J Aloys Comp. 665, 428–434 (2016)

    ADS  Google Scholar 

  45. L. Chauhan, A.K. Shukla, K. Sreenivas, Ceram. Int. 41, 8341 (2015)

    Google Scholar 

  46. M. Saleem, A. Mishra, Chin. J. Phys. 61, 166–179 (2019)

    Google Scholar 

  47. R. Zhand et al., Mater. Res. Bulletin 98, 133–138 (2018)

    Google Scholar 

  48. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, Physica B 393(1–2), 24 (2007)

    ADS  Google Scholar 

  49. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)

    Google Scholar 

  50. H. Jain, C.H. Hsieh, J. Non-Cryst, Solids 172–174, 1408 (1994)

    Google Scholar 

  51. H. Singh, A. Kumar, K.L. Yadav, Mater. Sci. Eng., B 176, 54 (2011)

    Google Scholar 

  52. B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 43, 401 (2008)

    Google Scholar 

  53. V. Tendon, M. Saleem, N. Kaurav, R.C. Dixit, Materials Today: Proceedings 30, 234–237 (2020)

    Google Scholar 

  54. S. Ali Faghidian, Math. Methods Appl Sci. (2020). https://doi.org/10.1002/mma.6877

    Article  Google Scholar 

  55. B. Behera, P. Nayak, R.N.P. Choudhary, J. Mater Sci: Mater Electron 19, 1005 (2008)

    Google Scholar 

  56. M. Saleem, Res. Trends Chall. Phys. Sci. (2021). https://doi.org/10.9734/bpi/rtcps/v2/12784D

    Article  Google Scholar 

  57. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    ADS  Google Scholar 

Download references

Acknowledgements

UGC-DAE-CSR, Indore (M. P.), India is acknowledged as an institute for extending its facilities. Authors acknowledge support from Dr. V. G. Sathe, center director, Dr. M. Gupta for XRD characterization, Dr. R. Reddy for dielectric and Mössbauer measurements, Dr RJ Chaudhary of UGC-DAE CSR, Indore for Magnetisation measurement.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

KP: sample synthesis and characterizations. MS: writing, software, data curation. SP: validation and supervision. AM: investigation, review and grammar curation.

Corresponding author

Correspondence to M. Saleem.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and animal participation

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, K., Saleem, M., Phadke, S. et al. Structural, electrical and magnetic properties of (Cu/Co)Fe2O4 spinel ferrite materials. Appl. Phys. A 128, 988 (2022). https://doi.org/10.1007/s00339-022-06149-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06149-w

Keywords

Navigation