Skip to main content

Advertisement

Log in

Controlled synthesis of Ag/CuO nanocomposites: evaluation of their antimycobacterial, antioxidant, and anticancer activities

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein we summarize the production of silver/copper oxide nanocomposites (Ag/CuO NCs) by a facile solution combustion method with the aid of abio-fuel as reductant. Powder XRD results revealed the formation of Ag/CuO NCs with average crystallite size ranging from 20 to 25 nm. These NCs were tested for their antimycobacterial activity against four mycobacterium species namely Mycobacterium tuberculosis H37Rv ATCC 27294, Mycobacterium abscessus ATCC 19977, Mycobacterium fortuitum ATCC 6841, Mycobacterium chelonae ATCC and anticarcinogenic activity on breast cancer cell line MDA-MB-231. Scavenging activity was evaluated by the 2, 2-diphenyl-1-picrylhydrazyl hydrate (DPPH) method. Results indicated that the Ag/CuO NCs had higher anticancer and slightly better scavenging activities than the undoped CuO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The authors are willing to share the related data and material according to the relevant needs.

References

  1. S. Das, T.L. Alford, Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. J. Appl. Phys. 113, 244905 (2013). https://doi.org/10.1063/1.4812584

    Article  ADS  Google Scholar 

  2. N. Tamaekong, C. Liewhiran, S. Phanichphant, Synthesis of Thermally Spherical CuO Nanoparticles. J. Nanomater. 2014, 507978 (2014). https://doi.org/10.1155/2014/507978

    Article  Google Scholar 

  3. W. Man, Y. Huang, H. Gou et al., Synthesis of novel CuO@ Graphene nanocomposites for lubrication application via a convenient and economical method. Wear 2022, 204323 (2022). https://doi.org/10.1016/j.wear.2022.204323

    Article  Google Scholar 

  4. H. Sathyananda, P. Prashanth, G. Prashanth, B. Nagabhushana, G. Krishnaiah, H. Nagendra, M. Dileep, S. Ananda, S. Boselin-Prabhu, Evaluation of antimicrobial, antioxidant, and cytotoxicity activities of CuO nanopellets synthesized by surfactant-free hydrothermal method. J. Test. Eval. 49, 2021 (2021). https://doi.org/10.1520/JTE20200538

    Article  Google Scholar 

  5. R. Rajamma, S.G. Nair, F.A. Khadar, B. Baskaran, Antibacterial and anticancer activity of biosynthesised CuO nanoparticles. IET Nanobiotechnol. 14(9), 833–838 (2020). https://doi.org/10.1049/iet-nbt.2020.0088

    Article  Google Scholar 

  6. S. Naz, S. Tabassum, N.F. Fernandes, M. Mujahid, M. Zia, E.J.C. Blanco, Anticancer and antibacterial potential of Rhus punjabensis and CuO nanoparticles. Natural Prod. Res. 34(5), 2020 (2020). https://doi.org/10.1080/14786419.2018.1495633

    Google Scholar 

  7. H. Sonbol, S. AlYahya, F. Ameen et al., Bioinspired synthesize of CuO nanoparticles using Cylindrospermum stagnale for antibacterial, anticancer and larvicidal applications. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01940-2

    Article  Google Scholar 

  8. D.M. Smyth, The effects of dopants on the properties of metal oxides. Solid State Ionics 129, 5–12 (2000). https://doi.org/10.1016/S0167-2738(99)00312-4

    Article  Google Scholar 

  9. D. Chavan, Synthesis and structural properties of Co doped CuO thin films by spray pyrolysis. IOSR J Appl. Phys. 10(4), 27–29 (2018). https://doi.org/10.9790/4861-1004032729

    Article  ADS  Google Scholar 

  10. J. Li, C. Lv, X. Liu et al., Highly durable Ag-CuO Heterostructure-decorated mesh for efficient oil/water separation and in situ photocatalytic dye degradation. Energy Environ. Mater. 4(4), 611–619 (2021). https://doi.org/10.1002/eem2.12144

    Article  Google Scholar 

  11. X. Li, H. Xu, C. Li, G. Qiao, A.A. Farooqi, A. Gedanken, X. Liu, X. Lin, Zinc-doped copper oxide nanocomposites inhibit the growth of pancreatic cancer by inducing autophagy through AMPK/mTOR pathway. Front. Pharmacol. 10, 319 (2019). https://doi.org/10.3389/fphar.2019.00319

    Article  Google Scholar 

  12. R. Javed et al., PVP and PEG doped CuO NPs are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 108–115 (2017). https://doi.org/10.1016/j.msec.2017.05.006

    Article  Google Scholar 

  13. N. Thakur, A.K. Kumar, Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: a rapid microwave assisted method. J. Environ. Chem. Eng. 8, 104011 (2020). https://doi.org/10.1016/j.jece.2020.104011

    Article  Google Scholar 

  14. R.S. Shinde, R.A. More, V.A. Adole, P.B. Koli, T.B. Pawar, B.S. Jagdale, B.S. Desale, Y.P. Sarnikar, Design, fabrication, antitubercular, antibacterial, antifungal and antioxidant study of silver doped ZnO and CuO nanocandidates: a comparative pharmacological study. Curr. Res. Green Sustain. Chem. 4, 10013 (2021). https://doi.org/10.1016/j.crgsc.2021.100138

    Article  Google Scholar 

  15. K.C. Patil, S.C. Aruna, M. Mimani, Combustion synthesis: an update. Curr. Opin. Solid State Mater. Sci. 6, 507–512 (2002). https://doi.org/10.1016/S1359-0286(02)00123-7

    Article  ADS  Google Scholar 

  16. K.C. Patil, M.S. Hegde, R. Tanu et al., Chemistry of nanocrystalline oxide Materials (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  17. H.M. Sathyananda, P.A. Prashanth, G.K. Prashanth et al., Evaluation of antimycobacterial, antioxidant, and anticancer activities of CuO nanoparticles through cobalt doping. Appl. Nanosci. 12, 79–86 (2022). https://doi.org/10.1007/s13204-021-02156-0

    Article  ADS  Google Scholar 

  18. P.G. Krishna, P.P. Ananthaswamy, P. Trivedi, V. Chaturvedi, N.B. Mutta, A. Sannaiah et al., Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel. Mater. Sci. Eng. C 75, 1026–1033 (2017). https://doi.org/10.1016/j.msec.2017.02.093

    Article  Google Scholar 

  19. G.K. Prashanth, P.A. Prashanth, U. Bora, M. Gadewar, B.M. Nagabhushana, S. Ananda, G.M. Krishnaiah, H.M. Sathyananda, In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis. Karbala Int. J. Modern Sci. 1, 67–77 (2015). https://doi.org/10.1016/j.kijoms.2015.10.007

    Article  Google Scholar 

  20. G.K. Prashanth, P.A. Prashanth, M. Ramani, S. Ananda, B.M. Nagabhushana, G.M. Krishnaiah, H.G. Nagendra, H.M. Sathyananda, C.R. Singh, Comparison of antimicrobial, antioxidant and anticancer activity of ZnO nanoparticles prepared by lemon juice and citric acid fueled solution combustion synthesis. BioNanoScience 9(4), 799–812 (2019). https://doi.org/10.1007/s12668-019-00670-8

    Article  Google Scholar 

  21. B.N. Patil, T.C. Taranath, Limonia acidisiima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against Mycobacterium tuberculosis. Int. J. Mycobacteriol. 5, 197–204 (2016). https://doi.org/10.1016/j.ijmyco.2016.03.004

    Article  Google Scholar 

  22. P.G. Krishna, P.P. Ananthaswamy, U. Bora, M. Gadewar, N.B. Mutta, In vitro antibacterial and anticancer studies of ZnO nanoparticles prepared by sugar fueled combustion synthesis. Adv. Mater. Lett. 8, 24–29 (2017). https://doi.org/10.5185/amlett.2017.6424

    Article  Google Scholar 

  23. G.K. Prashanth, P.A. Prashanth, B.M. Nagabhushana, S. Ananda, H.G. Nagendra, C. Rajendra Singh, In vitro antimicrobial, antioxidant and anticancer studies of ZnO nanoparticles synthesized by precipitation method. Adv. Sci. Eng. Med. 8, 306–313 (2016). https://doi.org/10.1166/asem.2016.1854

    Article  Google Scholar 

  24. G.K. Prashanth, P.A. Prashanth, P. Singh, B.M. Nagabhushana, C. Shivakumara, G.M. Krishnaiah, H.G. Nagendra, H.M. Sathyananda, V. Chaturvedi, Effect of doping (with cobalt or nickel) and UV exposure on the antibacterial, anticancer, and ROS generation activities of zinc oxide nanoparticles. J. Asian Ceram. Soc. 8(4), 1175–1187 (2020). https://doi.org/10.1080/21870764.2020.1824328

    Article  Google Scholar 

  25. D. Das, B.C. Nath, P. Phukon et al., Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surfaces B: Biointerfaces 101, 430–433 (2013). https://doi.org/10.1016/j.colsurfb.2012.07.002

    Article  Google Scholar 

  26. A.K. Jha, K. Prasad, V. Kumar, K. Prasad, Biosynthesis of silver nanoparticles using eclipta leaf. Biotechnol. Prog. 25, 1476–1479 (2009). https://doi.org/10.1002/btpr.233

    Article  Google Scholar 

  27. P. Malik, R. Shankar, V. Malik et al., Green chemistry based benign routes for nanoparticle synthesis. J. Nanopart. 2014, 1–14 (2014). https://doi.org/10.1155/2014/302429

    Article  Google Scholar 

  28. T.C. Prathna, L. Mathew, N. Chandrasekaran et al., Biomimetic synthesis of nanoparticles: science, technology and applicability. Biomimetics Learn Nat. (2010). https://doi.org/10.5772/8776

    Article  Google Scholar 

  29. S. Iqbal, M. Javed, A. Bahadur, M.A. Qamar, M. Ahmad, M. Shoaib, H. Li, Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible light. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03377-9

    Article  Google Scholar 

  30. S. Meghana, P. Kabra, S. Chakraborty et al., Understanding the pathway of antibacterial activity of copper oxide nanoparticle. RSC Adv. 5, 12293–12299 (2015). https://doi.org/10.1039/C4RA12163E

    Article  ADS  Google Scholar 

  31. J.E. Jeronsia, D.J.V. Raj, L.A. Joseph, K. Rubini, S.J. Das, In vitro antibacterial and anticancer activity of copper oxide nanostructures in human breast cancer Michigan Cancer Foundation-7 cells. J. Med. Sci. 36, 145–151 (2016). https://doi.org/10.4103/1011-4564.188899

    Article  Google Scholar 

  32. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012). https://doi.org/10.2147/IJN.S35347

    Article  Google Scholar 

  33. S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18, 321–336 (1995). https://doi.org/10.1016/0891-5849(94)00159-H

    Article  Google Scholar 

  34. S. Liao, Y. Zhang, X. Pan, F. Zhu, C. Jiang, Q. Liu, Z. Cheng, G. Dai, G. Wu, L. Wang, L. Chen, Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 14, 1469–1487 (2019). https://doi.org/10.2147/IJN.S191340

    Article  Google Scholar 

  35. J.H. Kim, J. Ma, S. Jo et al., Enhancement of antibacterial properties of a silver nanowire film via electron beam irradiation. ACS Appl. Bio Mater. 3(4), 2117–2124 (2020). https://doi.org/10.1021/acsabm.0c00003

    Article  Google Scholar 

  36. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22), 225103 (2007). https://doi.org/10.1088/0957-4484/18/22/225103

    Article  ADS  Google Scholar 

  37. S. Hamed, M. Emara, R.M. Shawky, R.A. El-Domany, T. Youssef, Silver nanoparticles: antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine. J. Basic Microbiol. 57(8), 659–668 (2017). https://doi.org/10.1002/jobm.201700087

    Article  Google Scholar 

  38. N. Dasgupta, S. Ranjan, D. Mishra, C. Ramalingam, Thermal Co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chem. Biol. Interact. 295, 109–118 (2018). https://doi.org/10.1016/j.cbi.2018.07.028

    Article  Google Scholar 

  39. N. Durán, P.D. Marcato, R.D. Conti, O.L. Alves, F.T.M. Costa, M. Brocchi, Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc. 21(6), 949–959 (2010). https://doi.org/10.1590/S0103-50532010000600002

    Article  Google Scholar 

  40. Z.M. Xiu, Q.B. Zhang, H.L. Puppala, V.L. Colvin, P.J. Alvarez, Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12(8), 4271–4275 (2012). https://doi.org/10.1021/nl301934w

    Article  ADS  Google Scholar 

  41. Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami, F. Traganos, Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27, 1–20 (1997)

    Article  Google Scholar 

  42. N.A. Tatton, H.J. Rideout, Confocal microscopy as a tool to examine DNA fragmentation, chromatin condensation and other apoptotic changes in Parkinson’s disease. Parkinsonism Rel. Disord. 5, 179–186 (1999). https://doi.org/10.1016/S1353-8020(99)00035-8

    Article  Google Scholar 

  43. M. Shafagh, F. Rahmani, N. Delirezh, CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53. Iran J. Basic Med. Sci. 18, 993–1000 (2015)

    Google Scholar 

  44. N.R. Kukia, A. Abbasi, S. Maysam, A. Froushani, Copper oxide nanoparticles stimulate cytotoxicity and apoptosis in glial cancer cell line. Dhaka Univ. J. Pharm. Sci. 17(1), 105–111 (2018). https://doi.org/10.3329/dujps.v17i1.37126

    Article  Google Scholar 

  45. Y.H. Hsin, C.F. Chen, S. Huang, T.S. Shih, P.S. Lai, P.J. Chueh, The apoptotic effect of nanosilver is mediated by a ROS- and JNK dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130–139 (2008). https://doi.org/10.1016/j.toxlet.2008.04.015

    Article  Google Scholar 

  46. S. Park, Y.K. Lee, M. Jung, K.H. Kim, N. Chung, E.K. Ahn, Y. Lim, K.H. Lee, Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal. Toxicol. 19, 59–65 (2007). https://doi.org/10.1080/08958370701493282

    Article  Google Scholar 

  47. T. Shanmugasundaram, M. Radhakrishnan, V. Gopikrishnan, Colloids and surfaces B: biointerfaces A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesized silver nanoparticles. Colloids Surf. B Biointerfaces 111, 680–687 (2013). https://doi.org/10.1016/j.colsurfb.2013.06.045

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge TIFR, Mumbai for Powder XRD, IIT Mandi for FESEM and elemental mapping and CDRI, Lucknow for carrying out the antimycobacterial studies.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Prashanth.

Ethics declarations

Conflict of interest

The authors declare no competing financial, professional and personal interests.

Consent for publication

We consented for the publication of this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashanth, G.K., Sathyananda, H.M., Prashanth, P.A. et al. Controlled synthesis of Ag/CuO nanocomposites: evaluation of their antimycobacterial, antioxidant, and anticancer activities. Appl. Phys. A 128, 614 (2022). https://doi.org/10.1007/s00339-022-05748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05748-x

Keywords

Navigation