Skip to main content
Log in

Dielectric spectroscopy studies on AL/p-Si photovoltaic diodes with Coomassie Brilliant Blue G-250

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, an aluminum/Coomassie Brilliant Blue G-250 (CBBG)/p-Silicon semiconductor device was produced by solution-processing method. The ideality factor and barrier height (BH) of the Al/CBBG/p-Si photovoltaic diode from IV measurements were obtained as 1.718 and 0.769 eV. It was observed that the diode had the parameters of open circuit voltage, Voc = 0.39 V and short circuit current density, Jsc = 2.57 mA/cm2 under the effect of 100 mW/cm2 light intensity. Admittance analysis to reveal the interface and dielectric parameters of the contact was performed using capacitance–conductance–voltage–frequency (CGVf) characteristics in the frequency range of 100 kHz–4 MHz and ± 3 V voltage range for CGV measurements and in the frequency range of 1 kHz–5 MHz and voltage range of 0.300 V–1.000 V for CGf measurements. The rise of capacitance values especially at low frequencies occur with the appearance of interfacial states at Si/CBBG contact. The dispersion in the real and imaginary parts of dielectric constant (ε′ and ε″) and electric modulus (M′ and M″), loss tangent (tanδ) and ac electrical conductivity (σac) to be a strong function of frequency and applied bias voltage in the depletion region of C and G/ω of Al/CBBG/p-Si diode may be ascribed to the specific distributions of interfacial states (Nss), their relaxation time (τ) and surface/dipole polarization at Si/CBBG interface as well as space charge carriers and in-homogeneity of interface section. In addition, the raise of the ac conductivity with increase in the frequency results from hopping type transport. The parameters of Nss and τ obtained from the conductance method for the diode have ranged from 1.90 × 1012 cm−2 eV−1 and 7.88 × 10−7 s to 1.24 × 1012 cm−2 eV−1 and 1.58 × 10−4 s, respectively. In addition, series resistance RsV and Rsf graphs were plotted over wide frequency and voltage range, and voltage and frequency dependence of Rs were attributed to the interfacial charge states and the specific distribution in the interfacial layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14.
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33 

Similar content being viewed by others

References

  1. B. Tareev, Physics of Dielectric Materials (Mir Publishers, Moscow, 1979)

    Google Scholar 

  2. S. Türkay, A. Tataroğlu, Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor. J. Mater. Sci. Mater. Electron. 32, 11418–11425 (2021). https://doi.org/10.1007/s10854-021-05349-z

    Article  Google Scholar 

  3. N. Kumar, S. Chand, Effects of temperature, bias and frequency on the dielectric properties and electrical conductivity of Ni/SiO2/p-Si/Al MIS Schottky diodes. J. Alloy. Compd. 817, 153294 (2020). https://doi.org/10.1016/j.jallcom.2019.153294

    Article  Google Scholar 

  4. A. Ashery, S.A. Gad, H. Shaban, Frequency and temperature dependence of dielectric properties and capacitance–voltage in GO/TiO2/n-Si MOS device. Appl. Phys. A 126, 547 (2020). https://doi.org/10.1007/s00339-020-03729-6

    Article  ADS  Google Scholar 

  5. G.G. Raju, Dielectrics in Electric Fields (Marcel Dekker Inc., New York, 2003)

    Book  Google Scholar 

  6. Ş Aydoğan, M. Sağlam, A. Türüt, Effect of temperature on the capacitance-frequency and conductance-voltage characteristics of polyaniline/p-Si/Al MIS device at high frequencies. Microelectron. Reliab. 52(7), 1362–1366 (2012)

    Article  Google Scholar 

  7. K.C. Kao, Dielectric Phenomena in Solids (Elsevier, Amsterdam, 2004)

    Google Scholar 

  8. M.M. El-Nahass, K.F. Abd-El-Rahman, A.A.A. Darwish, Dark electrical and photovoltaic properties of Schottky device based on organic thin film of 4-tricyanovinyl-N, N-diethylaniline. Eur. Phys. J. Appl. Phys. 48(3), 30403 (2009)

    Article  Google Scholar 

  9. H. Bentarzi, Transport in Metal-Oxide-Semiconductor Structures (Springer, Berlin, 2011)

    Book  Google Scholar 

  10. Y. Şafak-Asar, T. Asar, Ş Altındal, S. Özçelik, Investigation of dielectric relaxation and ac electrical conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs(110) schottky barrier diodes. J. Alloy. Compd. 628, 442–449 (2015). https://doi.org/10.1016/j.jallcom.2014.12.170

    Article  Google Scholar 

  11. Ch. Zervos, A. Adikimenakis, P. Beleniotis, A. Kostopoulos, M. Kayambaki, K. Tsagaraki, G. Konstantinidis, A. Georgakilas, In-situ SiNx/InN structures for InN field-effect transistors. Appl. Phys. Lett. 108, 142102 (2016). https://doi.org/10.1063/1.4945668

    Article  ADS  Google Scholar 

  12. Ç. Bilkan, Y. Azizian-Kalandaragh, S. Altındal, R. Shokrani-Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys. B 500, 154–160 (2016)

    Article  ADS  Google Scholar 

  13. V.R. Reddy, V. Manjunath, V. Janardhanam, Y.H. Kil, C.J. Choi, Electrical properties and current transport mechanisms of the Au/n-GaN schottky structure with solution-processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499 (2014)

    Article  ADS  Google Scholar 

  14. D.E. Yıldız, I. Dokme, Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al/SiO2/p-Si metal-insulator-semiconductor Schottky diodes. J. Appl. Phys. 110, 014507 (2011)

    Article  ADS  Google Scholar 

  15. H. Tecimer, H. Uslu, Z. Alahmed, F. Yakuphanoglu, S. Altındal, On the frequency and voltage dependence of admittance characteristics of Al/PTCDA/P-Si (MPS) type Schottky barrier diodes (SBDs). Compos. Part B Eng. 57, 25–30 (2014)

    Article  Google Scholar 

  16. D.A. Aldemir, M. Esen, A. Kökce, S. Karataş, A.F. Özdemir, Analysis of current–voltage and capacitance–voltage-frequency characteristics in Al/p-Si Schottky diode with the polythiophene-SiO2 nanocomposite interfacial layer. Thin Solid Films 519, 6004–6009 (2011)

    Article  ADS  Google Scholar 

  17. C.D. Georgiou, K. Grintzalis, G. Zervoudakis, I. Papapostolou, Mechanism of Coomassie brilliant blue G-250 binding to proteins: A hydrophobic assay for nanogram quantities of proteins. Anal. Bioanal. Chem. 391, 391–403 (2008). https://doi.org/10.1007/s00216-008-1996-x

    Article  Google Scholar 

  18. M.A. Rauf, S. Ashraf, S.N. Alhadrami, Photolytic oxidation of coomassie brilliant blue with H2O2. Dyes Pigment. 66(3), 197–200 (2005). https://doi.org/10.1016/j.dyepig.2004.09.006

    Article  Google Scholar 

  19. H. Çetinkaya, M. Yıldırım, P. Durmuş, Ş Altındal, Correlation between barrier height and ideality factor in identically prepared diodes of Al/Bi4Ti3O12/p-Si (MFS) structure with barrier inhomogeneity. J. Alloy. Compd. 721, 750–756 (2017)

    Article  Google Scholar 

  20. O. Polat, M. Coskun, F. Coskun, B. Zengin Kurt, Z. Durmus, Y. Caglar, A. Turut, Electrical characterization of Ir doped rare-earth orthoferrite YbFeO3. J. Alloys Compds 787, 1212–1224 (2019)

    Article  Google Scholar 

  21. A. Kocyigit, İ Orak, A. Turut, Temperature dependent dielectric properties of Au/ZnO/n-Si Heterojuntion. Mater. Res. Express 5, 035906 (2018)

    Article  ADS  Google Scholar 

  22. A. El-Ghandoura, N.A. El-Ghamaz, M.M. El-Nahass, H.M. Zeyada, Temperature and frequency dependence outline of DC electrical conductivity, dielectric constants, and AC electrical conductivity in nanostructured TlInS2 thin films. Phys. E Low Dimens. Syst. Nanostruct. 105, 13–18 (2019)

    Article  ADS  Google Scholar 

  23. M.G. Manjunatha, A.V. Adhikari, P.K. Hegde, C.S.S. Sandeep, R. Philip, Optical characterization of a new donor–acceptor type conjugated polymer derived from 3,4-diphenylthiophene. J. Mater. Sci. 44, 6069–6077 (2009). https://doi.org/10.1007/s10853-009-3838-4

    Article  ADS  Google Scholar 

  24. S. Kamel, E.H. Houssein, M.H. Hassan, M. Shouran, F.A. Hashim, An efficient electric charged particles optimization algorithm for numerical optimization and optimal estimation of photovoltaic models. Mathematics 10(6), 913 (2022). https://doi.org/10.3390/math10060913

    Article  Google Scholar 

  25. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Oxford Press, Oxford, 1988)

    Google Scholar 

  26. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  27. S.M. Sze, K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007)

    Google Scholar 

  28. Y.S. Lou, C.Y. Wu, A self-consistent characterization methodology for Schottky-barrier diodes and ohmic contacts. IEEE Trans. Electron Devices 41(4), 558–566 (1994)

    Article  ADS  Google Scholar 

  29. A.R. Vearey-Roberts, D.A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers. Appl. Phys. Lett. 86(7), 072105 (2005)

    Article  ADS  Google Scholar 

  30. M. Cakar, N. Yildirim, S¸. Karatas¸, C. Temirci, A. Turut, Current-voltage and capacitance-voltage characteristics of Sn/rhodamine-101/n-Si and Sn/rhodamine-101p-Si Schottky barrier diodes. J. Appl. Phys. 100(7), 074505 (2006)

    Article  ADS  Google Scholar 

  31. T. Kurata, H. Koezuka, S. Tsunoda, T. Ando, Metal/conductive-polymer junction: An In/poly(Nmethylpyrrole) diode with a tunnel Schottky junction. J. Phys. D 19(4), L57–L60 (1986)

    Article  ADS  Google Scholar 

  32. H. Dogan, İ Orak, N. Yildirim, Photovoltaic and electrical properties of Al/Ruthenium (II)-complex/p-Si photodiode. Cumhuriyet Univ. Fac. Sci. Sci. J. CSJ 38(2), 329–341 (2017)

    Article  Google Scholar 

  33. N. Oyama, Y. Takanashi, S. Kaneko, K. Momiyama, K. Suzuki, F. Hirose, Pentacene/n–Si heterojunction diodes and photovoltaic devices investigated by I-V and C–V measurements. Microelectron. Eng. 88, 2959–2963 (2011)

    Article  Google Scholar 

  34. O.S. Cifci, A. Kocyigit, P.C. Sun, Perovskite/p-Si photodiode with ultra-thin metal cathode. Superlattices Microstruct. 120, 492–500 (2018)

    Article  ADS  Google Scholar 

  35. A.A.M. Farag, W.G. Osiris, I.S. Yahia, Photovoltaic performance analysis of organic device based on PTCDA/n-Si heterojunction. Synth. Met. 161, 1805–1812 (2011)

    Article  Google Scholar 

  36. E.H. Nicollian, A. Goetzberger, Bell. Syst. Tech. J. 46, 1055 (1967)

    Article  Google Scholar 

  37. E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  38. J. Fernandez, P. Godignon, S. Berberich, J. Rebollo, G. Brezenanu, J. Millan, High frequency characteristics and modelling of p type 6H-Silicon carbide MOS structures. Solid State Electron. 39, 1359–1364 (1996)

    Article  ADS  Google Scholar 

  39. Ö. Sevgili, Y. Azizian-Kalandaragh, Ş Altındal, Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Phys. B 587, 412122 (2020)

    Article  Google Scholar 

  40. A. Büyükbaş Uluşan, S. Altındal Yerişkin, A. Tataroğlu, M. Balbaşı, Y. Azizian-Kalandaragh, Electrical and impedance properties of MPS structure based on (Cu2O-CuO-PVA) interfacial layer. J. Mater. Sci. Mater. Electron. 29(10), 8234–8243 (2018)

    Article  Google Scholar 

  41. İ Yücedağ, A. Kaya, H. Tecimer, Ş Altındal, Temperature and voltage dependences of dielectric properties and ac electrical conductivity in Au/PVC+TCNQ/p-Si structures. Mater. Sci. Semicond. Process. 28, 37–42 (2014). https://doi.org/10.1016/j.mssp.2014.03.051

    Article  Google Scholar 

  42. I. Orak, A. Karabulut, Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3/p-Si structure. Turk. J. Phys. 44, 85–94 (2020). https://doi.org/10.3906/fiz-1907-21

    Article  Google Scholar 

  43. A. Ladhar, M. Arous, H. Kaddami, M. Raihane, A. Kallel et al., AC and DC electrical conductivity in natural rubber/nanofibrillated cellulose nanocomposites. J. Mol. Liq. 209, 272–279 (2015). https://doi.org/10.1016/j.molliq.2015.04.020

    Article  Google Scholar 

  44. N.K. Tailor, S.P. Senanayak, M. Abdi-Jalebi, S. Satapathi, Low-frequency carrier kinetics in triple cation perovskite solar cells probed by impedance and modulus spectroscopy. Electrochim. Acta 386, 138430 (2021). https://doi.org/10.1016/j.electacta.2021.138430

    Article  Google Scholar 

  45. H. Saghrouni, S. Jomni, W. Belgacem, N. Hamdaoui, L. Beji, Physical and electrical characteristics of metal/Dy2 O3 /p-GaAs structure. Phys. B 444, 58–64 (2014). https://doi.org/10.1016/j.physb.2014.03.030

    Article  ADS  Google Scholar 

  46. M. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar et al., Electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr.9°Ir°.0°O3 perovskites. RSC Adv. 8, 4634–4648 (2018). https://doi.org/10.1039/c7ra13261a

    Article  ADS  Google Scholar 

  47. F. Parlaktürk, Ş Altındal, A. Tataroğlu, M. Parlak, A. Agasiev, Microelectron. Eng. 85, 81 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Güllü.

Ethics declarations

Conflict of interest

The author certifies that he has no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güllü, Ö. Dielectric spectroscopy studies on AL/p-Si photovoltaic diodes with Coomassie Brilliant Blue G-250. Appl. Phys. A 128, 587 (2022). https://doi.org/10.1007/s00339-022-05729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05729-0

Keywords

Navigation