Skip to main content
Log in

Frequency and temperature dependence of dielectric properties and capacitance–voltage in GO/TiO2/n-Si MOS device

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dielectric properties and capacitance–voltage of GO/TiO2/n-Si junction were investigated in frequency range 10–2 × 107 Hz and temperature (233–363 K). Reliance of \(\varepsilon^{\prime}\), \(\varepsilon^{\prime\prime}\), tanδ,, , impedance, and ac conductivity on frequency and temperature were studied. From results, it is found that \(\varepsilon^{\prime}\) increases with increasing frequency at low-frequency region, while that it decreases at high frequencies. \(\varepsilon^{\prime\prime}\) decreases with frequency (f) increment in the range 10–56 Hz and 1619–12195 Hz. It is observed the decrement of tanδ with increasing frequency in higher range 1,355,210–2 × 107 Hz. Real part of electric modulus () reduces with increment frequency. Conductivity rises with rising temperature. Moreover, activation energy (Ea) values decrease with increasing f then increase at higher f. Different parameters, such as carrier density, built-in potential, and barrier height, were derived from the reverse bias C−2–V curves. It is found that, built-in-voltage (Vbi), barrier height (φb), and Fermi energy (EF) increase with increasing temperature. Moreover, donor concentration (ND) and image force barrier lowering (∆φb) decrease with temperature increment. In addition, series resistance (Rs) decreases with temperature and frequency increment. In addition, this MOS structure GO/TiO2/n-Si works as a device, and by controlling the temperature, frequency, and voltage, the required properties from this device can be adjusted to make it suitable for any required applications; this is obvious from investigated dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.M. Neagu, L.P. Curecheriu, A. Cazacu, L. Mitoseriu, Compos. B 66, 109 (2014)

    Article  Google Scholar 

  2. O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, I. Orak, S. Altındal, Compos. B 113, 14 (2017)

    Article  Google Scholar 

  3. S.S. Fouad, G.B. Sakr, I.S. Yahia, D.M. Abdel-Basset, F. Yakuphanoglu, Phys. B 415, 82 (2013)

    Article  ADS  Google Scholar 

  4. M. Rahimian, M. Fathipour, Mater. Sci. Semicond. Process. 63, 142 (2017)

    Article  Google Scholar 

  5. V. Mann, V. Rastogi, Opt. Comm. 387, 202 (2017)

    Article  ADS  Google Scholar 

  6. Y.S. Asar, T. Asar, Ş. Altındal, S. Özçelik, Philos. Mag. 95, 2885 (2015)

    Article  ADS  Google Scholar 

  7. Ç. Bilkan, Ş. Altındal, Y. Azizian-Kalandaragh, Phys. B: Condens. Matter 515, 28 (2017)

    Article  ADS  Google Scholar 

  8. A. Nikravan, Y. Badali, Ş. Altındal, I. Uslu, I. Orak, J. Electron. Mater. 46, 5728 (2017)

    Article  ADS  Google Scholar 

  9. S. Chand, J. Kumar, Appl. Phys. A. 63, 171 (1996)

    ADS  Google Scholar 

  10. Y. Masuda, S. Ieda, K. Koumoto, Langmuir 18, 4415 (2003)

    Article  Google Scholar 

  11. S. Sonmezoglu, S. Akin, Sens. Actuat. A Phys. 199, 18 (2013)

    Article  Google Scholar 

  12. O. Carp, Prog. Solid State Chem. 32, 33 (2004)

    Article  ADS  Google Scholar 

  13. A. Ashery, H. Shaban, S.A. Gad, B.A. Mansour, Mater. Sci. Semicond. Process. 114, 105070 (2020)

    Article  Google Scholar 

  14. M. Chandra Sekhar, P. Kondaiah, S.V. Jagadeesh Chandra, G. Mohan Rao, S. Uthanna, Appl. Surf. Sci. 258, 1789 (2011)

    Article  ADS  Google Scholar 

  15. M. Chandra Sekhar, P. Kondaiah, S.V. Jagadeesh Chandra, G. Mohan Rao, S. Uthanna, Surf. Interface Anal. 44, 1299 (2012)

    Article  Google Scholar 

  16. J.Y. Kim, H.S. Jung, J.H. No, J.R. Kim, K.S. Hong, J. Electroceram. 16, 447 (2006)

    Article  Google Scholar 

  17. F. Jin, H. Tong, L. Shen, K. Wang, P.K. Chu, Mater. Chem. Phys. 100, 31 (2006)

    Article  Google Scholar 

  18. P. Vitanov, A. Harizanova, T. Ivanova, J. Phys: Conf. Ser. 356, 012041 (2012)

    Google Scholar 

  19. S.P. Szu, C.Y. Lin, Mater. Chem. Phys. 82, 295 (2003)

    Article  Google Scholar 

  20. D. Maurya, L. Kumar, Shripal, J. Phys. Chem. Solids. 66, 1614 (2005)

    Article  ADS  Google Scholar 

  21. A.A. Sattar, S.A. Rahman, Phys. Stat. Sol. A 200(2), 415 (2003)

    Article  ADS  Google Scholar 

  22. S.A. Nouh, S.A. Gaafar, H.M. Eissa, Phys. Stat. Sol. A 175, 699 (1999)

    Article  ADS  Google Scholar 

  23. C. Fanggao, G.A. Saunders, E.F. Lambson, R.N. Hampton, G. Carini, G.D. Marco, M. Lanza, J. Appl. Poly. Sci. 34, 425 (1996)

    Article  Google Scholar 

  24. M.R. RangaRaju, R.N.P. Choudhary, S. Ram, Phys. Stat. Sol. B 239(2), 480 (2003)

    Article  ADS  Google Scholar 

  25. A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  26. C.P. Symth, Dielectric Behavior and Structure (McGraw-Hill, New York, 1955)

    Google Scholar 

  27. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  28. A. Kaya, Ö. Vural, H. Tecimer, S. Demirezen, Ş. Altındal, Curr. Appl. Phys. 14, 322 (2014)

    Article  ADS  Google Scholar 

  29. S. Fang, C.H. Ye, T. Xie, Z.Y. Wong, J.W. Zhao, L.D. Zhang, Appl. Phys. Lett. 88, 013101 (2006)

    Article  ADS  Google Scholar 

  30. B.H. Venkataraman, K.B.R. Varma, J. Mater. Sci.: Mater. Electron. 16(6), 335 (2005)

    Google Scholar 

  31. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1993)

    Google Scholar 

  32. K. Kumari, K. Prasad, R.N.P. Choudhary, J. Alloys Compd. 453(1–172), 325 (2008)

    Google Scholar 

  33. A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, J. Alloys Compd. 536, 173 (2012)

    Article  Google Scholar 

  34. Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Appl. Phys. Lett. 87, 142906 (2005)

    Article  ADS  Google Scholar 

  35. K. Jawahar, R.N.P. Choudhary, Solid State Commun. 142, 449 (2007)

    Article  ADS  Google Scholar 

  36. A. Prasad, A. Basu, Mater. Lett. 66, 1 (2012)

    Article  Google Scholar 

  37. İ. Dökme, Ş. Altındal, IEEE Trans. Electron. Dev. 58, 4042 (2011)

    Article  ADS  Google Scholar 

  38. S.A. Awan, R.D. Gould, Thin Solid Films 423, 267 (2003)

    Article  ADS  Google Scholar 

  39. A. Tatarŏglu, Microelectron. Eng. 83, 2551 (2006)

    Article  Google Scholar 

  40. A. Tatarŏglu, S. Altındal, Nucl. Instr. Meth. B 254, 113 (2007)

    Article  ADS  Google Scholar 

  41. B. Akkal, Z. Benamara, B. Gruzza, L. Biduex, Vacuum 57, 219 (2000)

    Article  Google Scholar 

  42. K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Stat. Sol. (a) 199, 507 (2003)

    Article  ADS  Google Scholar 

  43. K.M.M. Abdel, M.Y. Elzayat, T.R. Hammad, A.I. Aboud, H. Abdelmonem, Phys. Scr. 83, 035705 (2011)

    Article  ADS  Google Scholar 

  44. A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, J. Alloys Compd. 653, 506 (2015)

    Article  Google Scholar 

  45. M.S. Mattsson, G.A. Niklasson, K. Forsgren, A. Harsta, J. Appl. Phys. 85(4), 2185 (1999)

    Article  ADS  Google Scholar 

  46. K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Status Solidi A 199(3), 507 (2003)

    Article  ADS  Google Scholar 

  47. A.A. Sattar, S.A. Rahman, Phys. Status Solidi A. 200(2), 415 (2003)

    Article  ADS  Google Scholar 

  48. A.S. Md, S. Rahman, M.H. Islam, C.A. Hogarth, Int. J. Electron. 62(2), 167 (1987)

    Article  Google Scholar 

  49. R.S. Sharma, N. Mehta, A. Kumar, Chin. Phys. Lett. 25, 4079 (2008)

    Article  ADS  Google Scholar 

  50. A. Gümüş, A. Türüt, N. Yalçın, J. Appl. Phys. 91, 245 (2002)

    Article  ADS  Google Scholar 

  51. D.K. Schroder, Semiconductor material and device characterization, 3rd edn. (Wiley, Canada, 2006)

    Google Scholar 

  52. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  53. M. Sharma, S.K. Tripathi, J. Appl. Phys. 112, 024521 (2012)

    Article  ADS  Google Scholar 

  54. S. Zeyrek, S. Altındal, H. Yuzer, M.M. Bulbul, Appl. Surf. Sci. 252, 2999 (2006)

    Article  ADS  Google Scholar 

  55. E.H. Nicollian, J.R. Brews, MOS (metal/oxide/semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  56. A. Tataroglu, S. Altindal, S. Karadeniz, N. Tugluoglu, Microelectron J. 34, 1043 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashery, A., Gad, S.A. & Shaban, H. Frequency and temperature dependence of dielectric properties and capacitance–voltage in GO/TiO2/n-Si MOS device. Appl. Phys. A 126, 547 (2020). https://doi.org/10.1007/s00339-020-03729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03729-6

Keywords

Navigation