Skip to main content
Log in

The electrical and transport properties of decorated ZrSe2 monolayer nano-sheet with copper clusters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Decorating two-dimensional materials can enhance their electrical and transport properties. Herein, the effect of the copper cluster on the electrical and the transport properties of the monolayer zirconium diselenide (ZrSe2) nano-sheet is investigated using density functional theory joined with non-equilibrium green function. The results show that the copper cluster can turn the ZrSe2 monolayer into an n-type semiconductor with a reduction of band gap from 0.59 eV in the pristine one to 0.15 eV. Based on the size of the cluster, the current–voltage characteristic altered drastically. It shows that decorated ZrSe2 exhibits negative differential resistance in its current–voltage characteristic and the lack of continuity in the density of states inside the channel is the main reason for such an effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Y. Li, S. Tongay, Q. Yue, J. Kang, J. Wu, J. Li, J. Appl. Phys. 14, 174307 (2013)

    Article  ADS  Google Scholar 

  2. W.X. Zhang, Z.S. Huang, W.L. Zhang, Y.R. Li, Nano Res. 7, 1731 (2014)

    Article  Google Scholar 

  3. S. Li, M. Zhou, X. Wang, F. Zheng, Tunable direct-indirect band gaps of ZrSe2 nanoribbons. J. Appl. Phys. 124, 034304 (2018)

    Article  ADS  Google Scholar 

  4. H. Guo, N. Lu, L. Wang, X. Wu, X.C. Zeng, Tuning electronic and magnetic properties of early transition metal dichalcogenides via tensile strain. J. Phys. Chem. C 118, 7242–7249 (2014)

    Article  Google Scholar 

  5. C. Gong, H.J. Zhang, W.H. Wang, L. Colombo, R.M. Wallace, K. Cho, J. Appl. Phys. Lett. 103, 053513 (2013)

    Article  ADS  Google Scholar 

  6. D. Guangqian, G.Y. Gao, H. Zhishuo, Z. Wenxu, Y. Kailun, Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit. Nanotechnology 27, 375703 (2016)

    Article  Google Scholar 

  7. A. Sohail, Y. Jiahao, Two- dimensional transition metal dichalgenides and their charge carrier mobilities in field-effect transistors. Nano Micro Lett. 9, 9–50 (2017)

    Article  Google Scholar 

  8. M. Zhang, Y.M. Zhu, X.S. Wang, Q.L. Feng, S.L. Qiao, W. Wen, Y.F. Chen, M.H. Cui, J. Zhang, C.Z. Cai, L.M. Xie, Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 137, 7051–7054 (2015)

    Article  Google Scholar 

  9. A.S. Golub, Y.V. Zubavichus, L.S. Yu, N.N. Yu, Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds. ChemInform 34, 123–141 (2003)

    Article  Google Scholar 

  10. Z. Xu, Z. Hui, C. Tingzhen, G. Yonghui, W. Haiyang, W. Tianxing, Modulating the electronic and magnetic properties of monolayer ZrSe2 by doping. Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2018.06.038

    Article  Google Scholar 

  11. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nano-sheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 123, 11289–11293 (2011)

    Article  ADS  Google Scholar 

  12. X. Zhao, X. Dai, C. Xia, T. Wang, Structural defects in pristine and Mn-doped monolayer WS2: A first-principles study. Superlattices Microstruct. 85, 339–347 (2015)

    Article  ADS  Google Scholar 

  13. A. Ghafari, A. Boochani, C. Janowitz, R. Manzke, Electronic structure of ZrSxSe2 − x by, Tran-Blaha modified Becke-Johnson density functional. Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.84.125205

    Article  Google Scholar 

  14. X. Zhao, C. Xia, T. Wang, X. Dai, Effect of structural defects on electronic and magnetic properties of pristine and Mn-doped MoS2 monolayer. Solid State Commun. 220, 31–35 (2015)

    Article  ADS  Google Scholar 

  15. X. Zhao, T. Wang, C. Xia, X. Dai, S. Wei, L. Yang, Magnetic doping in two-dimensional transition-metal dichalcogenide zirconium diselenide. J. Alloys Compd. 698, 611–616 (2017)

    Article  Google Scholar 

  16. X. Zhao, X. Zhang, T. Wang, S. Wei, L. Yang, Electronic structures and optical properties of ZrS2 monolayer by n- and p-type doping. J. Alloy. Compd. 748, 798–803 (2018)

    Article  Google Scholar 

  17. X. Zhao, C. Xia, T. Wang, X. Dai, Electronic and magnetic properties of X-doped (X=Ti, Zr, Hf) tungsten disulfide monolayer. J. Alloy. Compd. 654, 574–579 (2016)

    Article  Google Scholar 

  18. X. Liu, X. Zhao, X. Ma, N. Wu, Q. Xin, T. Wang, Effect of strain on electronic and magnetic properties of n-type Cr-doped WSe2 monolayer. Physica E 87, 6–9 (2017)

    Article  ADS  Google Scholar 

  19. X. Ma, X. Zhao, T. Wang, Effect of strain on electronic and magnetic properties of Fe-doped WSe2 monolayer. Rsc Adv. 6, 69758 (2016)

    Article  ADS  Google Scholar 

  20. H. Wang, X. Zhao, Y. Gao, T. Wang, S. Wei, Effect of structural defects on electronic and magnetic properties of ZrS2 monolayer. Superlattices Microstruct. 116, 164 (2018)

    Article  ADS  Google Scholar 

  21. Y.H. Gao, X. Zhao, H.Y. Wang, T.X. Wang, S.Y. Wei, Electronic and magnetic properties of structural defects in pristine ZrSe2 monolayer. Comput. Mater. Sci. 146, 36–41 (2018)

    Article  Google Scholar 

  22. X.-Y. Gao, J.-M. Zhang, A.-M. Wei, Yu-Hong, Effects of the vacancy and doping on the electronic and magnetic characteristics of ZrSe2 monolayer: a first- principles investigation. Thin Solid Films 732, 138790 (2021)

    Article  ADS  Google Scholar 

  23. M. Berahman, M.H. Sheikhi, Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper. Sens. Actuators B 219, 338–345 (2015)

    Article  Google Scholar 

  24. M. Berahman, M.H. Sheikhi, Transport properties of zigzag graphene nanoribbon decorated with copper clusters. J. Appl. Phys. 116(9), 093701 (2014)

    Article  ADS  Google Scholar 

  25. M. Berahman, M.H. Sheikhi, A. Zarifkar, H. Nadgaran, Structural and electronic properties of zigzag graphene nanoribbon decorated with copper cluster. J. Comput. Electr. 14(1), 270–279 (2014)

    Article  Google Scholar 

  26. K. Stokbro, J. Taylor, M. Brandyge, P. Ordejon, TranSIESTA: a spice for molecular electronics. Ann. N. Y. Acad. Sci. 1006, 212–226 (2003)

    Article  ADS  Google Scholar 

  27. M.S. Jose, A. Emilio, D.G. Julian, G. Alberto, J. Javier, O. Pablo, S.-P. Daniel, The SIESTA method for ab initio order-N materials simulation. J. Phys. 14, 2745–2779 (2002)

    Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  29. R. Yue et al., HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9, 474–484 (2014)

    Article  Google Scholar 

  30. H.L. Zhuang, R.G. Hennig, Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C 117, 20440–20445 (2013)

    Article  Google Scholar 

  31. S. Lebègue, T. Björkman, M. Klingenberg, R.M. Nieminen, O. Eriksson, Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3, 031002 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SKK: Conceptualization, Software, Writing—review and editing, Writing—original draft. MB: Visualization, Supervision, Software—review and editing, Validation, Project administration, Methodology. MS: Software, Investigation, Resources, review and editing.

Corresponding author

Correspondence to M. Berahman.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (GIF 1367 kb)

Supplementary file2 (DOCX 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi Khorrami, S., Berahman, M. & Sadeghi, M. The electrical and transport properties of decorated ZrSe2 monolayer nano-sheet with copper clusters. Appl. Phys. A 128, 586 (2022). https://doi.org/10.1007/s00339-022-05722-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05722-7

Keywords

Navigation