Skip to main content
Log in

Effects of Ni doping at Co-site on dielectric, impedance spectroscopy and AC-conductivity in La2CoMnO6 double perovskites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multifunctionalities of double perovskites depend strictly on the 3d/4d/5d-transition metals that can be purposefully tuned by doping effect at the transition metal-site. In the present study, the effects of Ni doping at the Co-site on the dielectric, magnetodielectric, complex impedance, complex modulus and ac-conductivity are investigated in detail for the La2Co1-xNixMnO6 (x = 0, 0.1, 0.5) double perovskites. At room temperature, all the compounds exhibited monoclinic crystal symmetry (space group P21/n). No structural phase transition and/or impurity phases were observed after doping. The dielectric behavior is investigated over a wide frequency (100–1 MHz) and temperature (100–300 K) ranges, revealing an enhancement in the dielectric constant for the doped samples compared to parent La2CoMnO6. The magnetodielectric effect is also observed for x = 0 and x = 0.1 samples under 3 T magnetic field. The contributions of grain and grain boundaries at high and low frequencies become evident from the complex impedance spectroscopic and modulus studies. The corresponding carrier activation energies for all the samples are estimated from the Arrhenius fittings. The Nyquist plots are fitted well with an equivalent circuit consisting of two parallel resistance–capacitance elements connected in series, representing the grain and grain boundary effects. The behaviour of the temperature-dependent unitless exponent function predicts the Overlapping Large Polaron Tunneling mechanism in the parent system, while the non-overlapping Small Polaron Tunneling model best describes the doped x = 0.5 system. We confirmed by dc-conductivity study that the samples exhibited semiconductor-like nature in a wide temperature range. By revealing the dielectric, impedance and conductivity behaviours of Ni-doped La2CoMnO6, our study broadens the scope of further research on the doping effect at transition metal-sites in perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.M. Rai, P. Singh, S.K. Saxena, V. Mishra, M.K. Warshi, R. Kumar, P. Rajput, A. Sagdeo, I. Choudhuri, B. Pathak, P.R. Sagdeo, Room-temperature magneto-dielectric effect in LaGa0.7Fe0.3O3+γ; origin and impact of excess oxygen. Inorg. Chem. 56(7), 3809–3819 (2017)

    Article  Google Scholar 

  2. S. Mukherjee, S. Chatterjee, S. Rayaprol, S.D. Kaushik, S. Bhattacharya, P.K. Jana, Near room temperature magnetodielectric consequence in (Li, Ti) doped NiO ceramic. J. of Appl. Phys. 119, 134103 (2016)

    Article  ADS  Google Scholar 

  3. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature (London) 426, 55–58 (2003)

    Article  ADS  Google Scholar 

  4. T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, A.P. Ramirez, Cupric oxide as an induced-multiferroic with high-TC. Nature Mater. 7, 291 (2008)

    Article  ADS  Google Scholar 

  5. D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, A. Sundaresan, S. Rajan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, D.D. Sarma, Near-room-temperature colossal magnetodielectricity and multiglass properties in partially disordered La2NiMnO6. Phys. Rev. Lett. 108, 127201 (2012)

    Article  ADS  Google Scholar 

  6. S. Baidya, T. Saha-Dasgupta, Electronic structure and phonons in La2CoMnO6: a ferromagnetic insulator driven by Coulomb-assisted spin-orbit coupling. Phys. Rev. B 84, 035131 (2011)

    Article  ADS  Google Scholar 

  7. R.C. Sahoo, S.K. Giri, D. Paladhi, A. Das, T.K. Nath, Influence of magnetic frustration and structural disorder on magnetocaloric effect and magneto-transport properties in La1.5Ca0.5CoMnO6 double perovskite. J. Appl. Phys. 120, 033906 (2016)

    Article  ADS  Google Scholar 

  8. K.D. Chandrasekhar, A.K. Das, C. Mitra, A. Venimadhav, The extrinsic origin of the magnetodielectric effect in the double perovskite La2NiMnO6. J. Phys. Condens. Matter 24, 495901 (2012)

    Article  Google Scholar 

  9. Z. Weng, J. Qin, A.A. Umar, J. Wang, X. Zhang, H. Wang, X. Cui, X. Li, L. Zheng, Y. Zhan, Lead-free Cs2BiAgBr6 double perovskite-based humidity sensor with superfast recovery time. Adv. Funct. Mater. 29, 1902234 (2019)

    Article  Google Scholar 

  10. M. Usman, Q. Yan, Recent advancements in crystalline Pb-free halide double perovskites. Curr. Comput.-Aided Drug Des. 10, 62 (2020)

    Google Scholar 

  11. A.M. Idris, T. Liu, J.H. Shah, A.S. Malik, D. Zhao, H. Han, C. Li, Sr2NiWO6 double perovskite oxide as a novel visible light responsive water oxidation photocatalyst. ACS Appl. Mater. Interfaces 12, 25938–25948 (2020)

    Article  Google Scholar 

  12. P. Shirazi, M. Rahbar, M. Behpour, M. Ashrafi, La2MnTiO6 double perovskite nanostructures as highly efficient visible light photocatalysts. New J. Chem. 44, 231–238 (2020)

    Article  Google Scholar 

  13. J. Krishna Murthy, A. Venimadhav, Metamagnetic behaviour and effect of field cooling on sharp magnetization jumps in multiferroic Y2CoMnO6. Eur. Phy. Lett. 108, 27013 (2014)

    Article  ADS  Google Scholar 

  14. R.C. Sahoo, S. Das, T.K. Nath, Size modulated Griffiths phase and spin dynamics in double perovskite Sm1.5Ca0.5CoMnO6. J. Magn. Magn. Mater. 460, 409–417 (2018)

    Article  ADS  Google Scholar 

  15. R.P. Madhogaria, R. Da, E.M. Clements, V. Kalappattil, N.S. Bingham, M.H. Phan, H. Srikanth, Effect of antiphase boundaries on the magnetic properties of La2CoMnO6. AIP Adv 9, 035142 (2019)

    Article  ADS  Google Scholar 

  16. R. Egoavil, S. Hühn, M. Jungbauer, N. Gauquelin, A. Béché, G. Van Tendeloo, J. Verbeeck, V. Moshnyaga, Phase problem in the B-site ordering of La2CoMnO6: impact on structure and magnetism. Nanoscale 7, 9835–9843 (2015)

    Article  ADS  Google Scholar 

  17. R.N. Mahato, K. Sethupathi, V. Sankaranarayanan, Colossal magnetoresistance in the double perovskite oxide La2CoMnO6. J. Appl. Phys. 107, 09D714 (2010)

    Article  Google Scholar 

  18. R. I. Dass and J. B. Goodenough, Multiple magnetic phases of La2CoMnO6−δ (0<~δ<~0.05). Phys. Rev. B 67, 014401 (2003)

  19. M.P. Singh, K.D. Truong, P. Fournier, Magnetodielectric effect in double perovskite La2CoMnO6 thin films. Appl. Phys. Lett. 91, 042504 (2007)

    Article  ADS  Google Scholar 

  20. Y.Q. Lin, X.M. Chen, Dielectric, ferromagnetic characteristics, and room-temperature magnetodielectric effects in double perovskite La2CoMnO6 ceramics. J. Am. Ceram. Soc. 94, 782 (2011)

    Article  Google Scholar 

  21. R. X. Silva, A. S. Menezes, R. M. Almeida, R. L. Moreira, R. Paniago, X. Marti, H. Reichlova, M. Maryško, M. Vinicius dos S. Rezende, C. W. A. Paschoa, Structural order, magnetic and intrinsic dielectric properties of magnetoelectric La2CoMnO6. J. Alloys Compd. 661, 541-552 (2016)

  22. S. Das, R.C. Sahoo, T.K. Nath, Investigation of room temperature multiferroic properties in sol-gel derived gadolinium, cobalt doped BiFeO3 nanoceramics. J. Appl. Phys. 127, 054101 (2020)

    Article  ADS  Google Scholar 

  23. N. Kim, S. Cho, S.H. Park, Y.J. Lee, R.A. Afzal, J. Yoo, Y. Seo, Y.J. Lee, J. Park, B-site doping effects of NdBa0.75Ca0.25Co2O5+δ double perovskite catalysts for oxygen evolution and reduction reactions. J. Mater. Chem. A 6, 17807–17818 (2018)

    Article  Google Scholar 

  24. L. Chen, C. Yuan, J. Xue, J. Wang, B-site ordering and magnetic behaviours in Ni-doped double perovskite Sr2FeMoO6. J. Phys. D Appl. Phys. 38, 4003 (2005)

    Article  ADS  Google Scholar 

  25. H.T. Handal, H.A. Mousa, S.M. Yakout, W. Sharmoukh, V. Thangadurai, Effect of Mn and Ni-doping on structure, photoluminescence and magnetic properties of perovskite-type BaSn0.99Gd0.01O3. J. Magn. Magn. Mater. 498, 165946 (2020)

    Article  Google Scholar 

  26. S. Fei Liu, Y. Jun Wu, J. Li, X. Ming Chen, Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl. Phys. Lett. 104, 082912 (2014)

    Article  ADS  Google Scholar 

  27. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 13645 (2015)

    Article  ADS  Google Scholar 

  28. V. Petkov, Y. Peng, G. Williams, B. Huang, D. Tomalia, Y. Ren, Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations. Phys. Rev. B 72, 195402 (2005)

    Article  ADS  Google Scholar 

  29. E. Enriquez, A. Chen, Z. Harrell, X. Lu, P. Dowden, N. Koskelo, M. Janoschek, C. Chen, Q. Jia, Oxygen vacancy-driven evolution of structural and electrical properties in SrFeO3−δ thin films and a method of stabilization. Appl. Phys. Lett. 109, 141906 (2016)

    Article  ADS  Google Scholar 

  30. D. Serrate, J.M.D. Teresa, P.A. Algarabel, C. Marquina, J. Blasco, M.R. Ibarra, J. Galibert, Magnetoelastic coupling in Sr2(Fe1−xCrx)ReO6 double perovskites. J. Phys. Cond. Matt. 19, 436226 (2007)

    Article  ADS  Google Scholar 

  31. Z. Songand, Q. Liu, Tolerance factor, phase stability and order–disorder of the pyrochlore structure. Inorg. Chem. Front. 7, 1583 (2020)

    Article  Google Scholar 

  32. G. Popov, M. Greenblatt, M. Croft, Large effects of A-site average cation size on the properties of the double perovskites Ba2xSrxMnReO6: a d5–d1 system. Phys. Rev. B 67, 024406 (2003)

    Article  ADS  Google Scholar 

  33. S. Halder, S. Bhuyan, R.N.P. Choudhary, Structural, dielectric and electrical characteristics of lead-free electro-ceramic: Bi(Ni2/3Ta1/3)O3. Eng. Sci. Technol. 22, 376–384 (2019)

    Google Scholar 

  34. S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics. Appl. Phys. Lett. 94, 062904 (2009)

    Article  ADS  Google Scholar 

  35. W.N. Su, D.H. Wang, Q.Q. Cao, Z.D. Han, J. Yin, J.R. Zhang, Y.W. Du, Large polarization and enhanced magnetic properties in BiFeO3 ceramic prepared by high-pressure synthesis. Appl. Phys. Lett. 91, 092905 (2007)

    Article  ADS  Google Scholar 

  36. X. Chen, R. Yang, J. Zhou, X. Chen, Q. Jiang, P. Liu, Dielectric and magnetic properties of multiferroic BiFeO3 ceramics sintered with the powders prepared by hydrothermal method. Solid State Sci. 19, 117–121 (2013)

    Article  ADS  Google Scholar 

  37. M.M. Ahmad, Giant dielectric constant in CaCu3Ti4O12 nanoceramics. Appl. Phys. Lett. 102, 232908 (2013)

    Article  ADS  Google Scholar 

  38. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Colossal dielectric constants in transition-metal oxides. Eur. Phys. J. Spec. Top. 180, 61–89 (2009)

    Article  Google Scholar 

  39. F. Schrettle, P. Lunkenheimer, J. Hemberger, V.Y. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Relaxations as key to the magnetocapacitive effects in the perovskite manganites. Phys. Rev. Lett. 102, 207208 (2009)

    Article  ADS  Google Scholar 

  40. S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška, R. Haumont, J. Kreisel, Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics. Phys. Rev. B 75, 024403 (2007)

    Article  ADS  Google Scholar 

  41. C. Rayssi, S.E. Kossia, J. Dhahri, K. Khirounib, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139–17150 (2018)

    Article  ADS  Google Scholar 

  42. C.C. Wang, M.N. Zhang, K.B. Xu, G.J. Wang, Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J. Appl. Phys. 112, 034109 (2012)

    Article  ADS  Google Scholar 

  43. M. Li, A. Feteira, D.C. Sinclair, Relaxor ferroelectric-like high effective permittivity in leaky dielectrics/oxide semiconductors induced by electrode effects: a case study of CuO ceramics. J. Appl. Phys. 105, 114109 (2009)

    Article  ADS  Google Scholar 

  44. S. Raut, P.D. Babu, R.K. Sharma, R. Pattanayak, S. Panigrahi, Grain boundary-dominated electrical conduction and anomalous optical-phonon behaviour near the Neel temperature in YFeO3 ceramics. J. Appl. Phys. 123, 174101 (2018)

    Article  ADS  Google Scholar 

  45. S. Das, R.C. Sahoo, K.P. Bera, T.K. Nath, Doping effect on ferromagnetism, ferroelectricity and dielectric constant in sol–gel derived Bi1−xNdxFe1−yCoyO3 nanoceramics. J. Magn. Magn. Mater. 451, 226–234 (2018)

    Article  ADS  Google Scholar 

  46. J. Krishna Murthy, A. Venimadhav, Magnetodielectric behavior in La2CoMnO6 nanoparticles. J. Appl. Phys. 111, 024102 (2012)

    Article  ADS  Google Scholar 

  47. N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramaniam, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater. 17, 2225–2227 (2005)

    Article  Google Scholar 

  48. J.R. Mac Donald, Impedance spectroscopy (John Wiley and Sons, Hoboken, 1987)

    Google Scholar 

  49. B. Tiwari, R.N.P. Choudhary, Complex impedance spectroscopic analysis of Mn-modified Pb (Zr0.65Ti0.35)O3 electroceramics. J. Phys. Chem. Solids 69, 2852 (2008)

    Article  ADS  Google Scholar 

  50. B. Behera, P. Nayaka, R.N.P. Choudhary, Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Mater. Chem. Phys. 106, 193–197 (2007)

    Article  Google Scholar 

  51. D. Triyono, C.A. Kafa, H. Laysandra, Effect of Sr-substitution on the structural and dielectric properties of LaFeO3 perovskite materials. J. Adv. Dielectr. 08, 1850036 (2018)

    Article  ADS  Google Scholar 

  52. M. Idrees, M. Nadeem, M. Mahmood, M. Atif, K.H. Chae, M.M. Hassan, Impedance spectroscopic investigation of delocalization effects of disorder induced by Ni doping in LaFeO3. J. Phys. D: App. Phys. 44, 105401 (2011)

    Article  ADS  Google Scholar 

  53. O. Bidault, M. Maglione, M. Actis, M. Kchikech, B. Salce, Polaronic relaxation in perovskites. Phys. Rev. B 52, 4191 (1995)

    Article  ADS  Google Scholar 

  54. V.F. Lvovic, Impedance spectroscopy, applications to electrochemical and dielectric phenomena (John Wiley and Sons, Hoboken, 2012)

    Book  Google Scholar 

  55. S. Thakur, R. Rai, I. Bdikin, M.A. Valentec, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 19(1), 1–8 (2016)

    Article  Google Scholar 

  56. R. Gerhardt, Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity. J. Phys. Chem. Solids 55, 1491 (1994)

    Article  ADS  Google Scholar 

  57. M. Sassi, A. Oueslati, M. Gargouri, Ionic ac and dc conductivities of NaCrP2O7 compound. Appl. Phys. A 119, 763 (2015)

    Article  ADS  Google Scholar 

  58. E. Sentürk, Y. Koseoglu, T. Sasmaz, F. Alan, M. Tan, RC circuit and conductivity properties of Mn0.6Co0.4Fe2O4 nanocomposite synthesized by hydrothermal method. J. Alloys. Compd. 578, 90 (2013)

    Article  Google Scholar 

  59. A. Ghosh, D. Chakravorty, AC conduction in semiconducting CuO-Bi2O3-P2O5 glasses. J. Phys. Condens. Matter 2, 5365 (1990)

    Article  ADS  Google Scholar 

  60. X. Le Cleac’h, Lois de variations et ordre de grandeur de la conductivité alternative des chalcogénures massifs non cristallins. J. Phys. 40, 417 (1979)

  61. G.E. Pike, AC conductivity of scandium oxide and a new hopping model for conductivity. Phys. Rev. B 6, 1572 (1972)

    Article  ADS  Google Scholar 

  62. S.R. Elliott, A theory of a.c. conduction in chalcogenide glasses. Philos. Mag. B 36, 1291 (1977)

    Article  ADS  Google Scholar 

  63. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969)

    Article  ADS  Google Scholar 

  64. S.R. Elliott, A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  65. A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, J. Legrand, Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films. J. Phys. Chem. A 116, 1051–1058 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Central Research Facility of IIT Kharagpur for necessary equipment support for various measurements for characterization of the samples for this research work. One of the authors (TKN) would like to acknowledge the partial funding from CRS project of UGC-DAE CSR, Indore with project no. CSR-IC-257/2017-18/1338 to carry out some of this research works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Nath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sahoo, R.C., Mishra, S. et al. Effects of Ni doping at Co-site on dielectric, impedance spectroscopy and AC-conductivity in La2CoMnO6 double perovskites. Appl. Phys. A 128, 354 (2022). https://doi.org/10.1007/s00339-022-05489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05489-x

Keywords

Navigation